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Abstract—Fraudulent cash-out is an increasingly serious prob-
lem in China, which costs financial facilities billions of dollars.
Unlike most of the well-studied credit card fraud, where only one
party illicitly seeks financial gain, fraudulent cash-out involves
both parties of the transaction. When prior information, such
as credit score and reputation score, about the majority of
consumers and shops is available, the phenomenon can be readily
analyzed by using the Markov random field models. In this paper,
we investigate the detection of fraudulent cash-out under the
circumstance where no prior information but only the labels of
a small set of consumers and shops are available. The novelty
of this work is building a semi-supervised learning algorithm
that automatically tunes the prior and parameters in Markov
random field while inferring labels for every node in the graph.
We evaluate our algorithm with data from JD Finance.

Index Terms—graph mining, Markov Random Field, semi-
supervised learning, Bayesian optimization

I. INTRODUCTION

Financial fraud has been increasing with the prevalence
of modern technologies, resulting in hundreds of billions of
dollars of loss each year [1], [2] There are many types of
financial frauds and credit card fraud alone costs financial
facilities billions of dollars of lost revenue annually [3].

Fraudulent cash-out is a new type of credit card fraud
appearing in China, which involves the use of credit cards at
point-of-sales (POS) machines and third-party online payment
systems. Unlike most credit card fraud, in this case both the
cardholder and merchant collude in fraudulent cash-outs. In a
typical fraudulent transaction, a merchant with POS machines
fabricates fictitious transactions for a cardholder, for example
for the sale of goods. Rather than receiving goods in the trans-
action, the cardholder receives cash directly from the merchant
instead. During the process, the merchant usually takes a small
portion of the transaction price as commission fee, while the

cardholder enjoys an interest free “loan” for a period of up to
56 days while avoiding to pay high interest payments on legal
cash advances on their credit card. Moreover, by engaging
in an fraudulent cash-out, a cardholder can obtain funds up
to his/her credit limit, unlike cash advances, which typically
have lower ceilings. A schematic diagram of fraudulent cash-
out is shown in Fig.1. In our paper, we are especially interested
in finding fraudulent merchants so that financial facilities can
regulate these merchants directly.

Fraudulent cash out has wide reaching consequences in
financial facilities and cardholders. It costs financial facilities
billions of dollars annually and harms cardholders credit score.
Traditional detection approaches rely on manual techniques
which are inefficient and not scalable. Data mining based fraud
detection algorithms, by recognizing patterns in transactions,
have been proven to be useful [4] in many real-world cases.
However, fraudulent activities also have been evolved to game
the detection algorithms [5]. As such, the detection methods
must improve accordingly.

There are many obstacles to these improvements and in-
novations to fraudulent detection algorithms. First, there is
a dearth of scholarly publications on credit card fraud [6]
due to the difficulties for academicians to obtain credit card
transaction data. Without abundance of literatures, it makes
exchanging ideas among academicians difficult and innovation
slow. Second, the transaction data are complex by its nature.
Even though fraud detection can be considered as a classi-
fication problem in machine learning, there is an imbalanced
number of fraudulent and legitimate transactions, and different
costs for misclassification. Another difficulty with analysis of
the transaction dataset is that perpetrators, both the cardholder
and merchant, usually carry more than one fraudulent cash-out
fraud [7]. Instead of analyzing these frauds independently, a
successful method should integrate the information.

Previous studies on data mining-based fraud detection can
be categorized into four types [8]. Supervised learning meth-
ods, such as logistic regression, SVM, as well as neural
networks [9], [10], [11] are applied on labeled data. Later more
sophisticated approaches are developed by combining popular
supervised learning methods in sequential fashion [12], [13].
When the available data are partially labeled, semi-supervised
learning methods are popular[14], [15]. Graph mining and
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Fig. 1. The schematic diagram of fraudulent cash-out. Solid line represents
the process of a normal transaction and dash line represents the process of
fraudulent cash-out.

link analysis are popular unsupervised learning algorithms that
have proven successful in detecting anomalies in unlabeled
data [16]. However, these techniques are under-rated in fraud
detection research [17].

In our paper, we modeled the detection problem within
the Markov random field (MRF) framework and discuss
the use of topology information on the bipartite transaction
network as well as the use of transaction patterns to detect
fraudulent merchants. With the presence of some labeled
data, we hybridize Belief Propagation (BP), which works
well in solving inference problem in unlabeled networks, and
Bayesian optimization to develop a robust semi-supervised
learning method. In previous studies, MRFs are applied to
modify the reputation scores obtained either by some heuristic
measures based on domain knowledges or by existing fraud
detection algorithms. More specifically, the reputation score is
first calculated independently of the assumption of the MRF
model and then used to construct node potential in MRF.
However reputation scores of consumers and shops are not al-
ways easily available in real-world problem. In previous study,
parameters in the MRF are predetermined by the researchers’
domain knowledges instead of being estimated by a data-
driven method. To overcome these drawbacks, our algorithm
tunes the prior for nodes and estimate parameters of edge
potential in MRF by applying Bayesian optimization under
the semi-supervised learning settings, therefore the algorithm
infers the label of unknown nodes without requiring any
prior knowledge or reputation scores of nodes. The algorithm
complements existing fraud detection algorithms when any
prior knowledge of node or reputation score is available. Our
main contributions are as followings:

• Formulating the fraudulent cash-out detection problem as
a graph mining and semi-supervised learning problem,
where transaction information is embedded in edge po-
tential.

• Using both labeled and unlabeled data to develop a
robust algorithm. Bayesian optimization is applied in the
algorithm to tune the parameters in Markov random field.

Our method leverages the information of the network and
the information of the labeled data therefore performs
well.

• Evaluating our algorithm on JingDong (JD) Finance
dataset. The performance shows that our algorithm is
efficient, effective and scalable.

II. DATA

The performance of the model is evaluated with real-world
data from JD Finance. JD is one of the largest business to
consumer (B2C) platforms in China with 1.6 billion transac-
tions and 222.6 million active users in 2016. The data are
stored and analyzed on JDs server. All sensitive fields in the
data are encrypted and no personal identifiable information is
accessible. A summary of the experiment data are shown in
Table 1. The degree distribution of transactions for consumers
and shops are shown in Fig. 1 a and Fig. 1 b correspondingly.
The log-log plot suggests that the number of transactions
has a heavy-tailed distribution. Like many other real-world
networks, the degree distribution for shops exhibits power law
property. A summary of descriptive statistics of the data is
shown in Table 1. Some sensitive statistics are marked as NA.

A. Transaction

JD provides purchase-on-credit service for its consumers
since Feb, 2014. The credit-card-like service enables con-
sumers to purchase products on JD without instant payment
and to repay the bill later. We use the terms card-holder and
consumer interchangeably in different contexts. We obtained
data on a sample of 2.91 million of offline purchase-on-credit
transactions of JD users. Data on the transaction contains
userID, merchantID, transaction amount, and trade status (suc-
ceeded or rejected). These transactions were made by 230, 238
users at 201, 289 shops. The data and results we present in this
paper is only from a small proportion of all JDs transactions.
In the practical application of the model, JD Finance will use
its complete dataset.

B. labeled data

Users in the dataset are marked as fraudulent or unknown,
while merchants are labeled as good, fraudulent or unknown.
Both the fraudulent consumers and the fraudulent merchants
were confirmed and marked by JD’s agents manually. The
agents are trained professionally to identify suspicious trans-
actions and make phone calls to check. The marked fraudulent
users usually have suspicious online behavior. Notably, no
users are marked as good users. This is because in China,

TABLE I
DESCRIPTIVE STATISTICS OF THE EXPERIMENT DATA

labeled Unknown Sum
user NA NA 230238

Mercahnt 7582 193707 201289

Transaction 0 2913471 2913471

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

547



Fig. 2. (a) Distribution of number of transactions for consumer (log-log). (b) Distribution of number of transactions for shop

the credit score system has not been well developed yet and
the cost of delinquency for card-holder is relatively low. As a
consequence, it is hard to tell whether a good consumer will
turn into a fraudulent one in the near future. However on the
other hand, the cost of making fraudulent transactions for a
shop with a good reputation is much higher. Therefore we are
confident in labeling shops with good reputation as good in
the sampled data.

III. METHOD

In this section, we formalize the fraudulent cash-out detec-
tion problem into a semi-supervised network learning problem
and discuss the methodology.

A. Problem statement

After introducing our goal and dataset, we formally define
our problem as follows. Given:

• An undirected bipartite Graph G = (Vc, Vs, E) where
vertices ic in the set Vc, represents consumers and vertices
js in set Vs represents shops, and E correspond to the
transactions among Vc and Vs.

• The binary label X ∈ {−1, 1} observed over a subset V ls
of Vs and label X = 1 over a subset V lc of Vc, where
X = 1 corresponds to fraudulent status

• The frequency of transactions between vertices ic and
vertices js and the amount associated with the transac-
tions.

Output: marginal probability P (Xjs = 1) for vertices js in
Vs, or the probability of a shop involved in fraudulent cash-
out transaction.

In general, the task of labeling vertices in a graph is NP-
hard. Markov Random Fields provide an attractive theoretical

model for this problem. In details, we can model the joint
probability of vertices as

P{X} = 1

Z

∏
js∈Vs

φ(Xjs)
∏
ic∈Vc

φ(Xic)
∏
i,j∈E

ψicjs(Xic , Xjs)

(1)
where the compatibility function ψicjs is the edge potential,
function φ is the node potential and Z is a normalization
constant. More specifically, node potential φ(Xic) and φ(Xjs)
reflect our prior knowledge about consumer ic and shop js.

The inference problem is still NP-hard [16] even under the
assumption of the MRF model. However recent developments
of Belief Propagation algorithm can be used to solve inference
problem on graph in several different domains [17][18][19],
including our context, where we are able to label vertices
by passing messengers along the edges. Mathematically, the
messenger is updated by the following rules. The belief passed
from a consumer to a shop takes the following form:

micjs(Xjs) =
∑
Xic

φ(Xic)ψicjs(Xic , Xjs)
∏

ks∈∂ic\js

mksic(Xic)

(2)
where ∂ic\js represents the neighbors of consumer ic except
shop js and the messenger can be understood as consumer ic’s
belief of what state shop js should be. Similarly, the belief
passed from a shop to a consumer takes the form of:

mjsic(Xic) =
∑
Xjs

φ(Xjs)ψjsic(Xjs , Xic)
∏

kc∈∂js\ic

mkcjs(Xjs)

(3)
Then our belief of consumer ic is updated as:

bic(Xic) = Kicφ(Xic)
∏

js∈∂ic

mjsic(Xic) (4)
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and our belief of shop js is updated as:

bjs(Xjs) = Kjsφ(Xjs)
∏

ic∈∂js

micjs(Xjs) (5)

where Kic ,Kjs are normalizing constants.
In our problem, several modifications on Belief Propagation

algorithm are needed to incorporate extra information carried
by transaction and our knowledge of observed labels. The
adaption is a non-trivial process since BP is originally de-
signed for unsupervised learning, while our problem is semi-
supervised.

Several studies [22], [23] tried to address the semi-
supervised learning problem in generative approach. One com-
monly adopted method is to redefine the overall log likelihood
function where labeled data and unlabeled data have different
weights in the redefined function, thus the algorithm that
maximizes this redefined function is robust against incorrect
model assumptions. However, in Markov random fields, due
to the compatibility function φicjs , it seems unclear about how
to assign different weights to labeled and unlabeled data in the
log likelihood function. Some researches [24], [25] proposed
methods that directly absorb the information of labeled nodes
into the Markov random field model , but their approach
suffers when the generative model is not accurate.

In our paper, we use the labeled data in a different way.
To the best of our knowledge, under the Markov random
model assumption, all the algorithms for fraud detection or
anomaly detection choose the parameters in potential functions
arbitrarily or by some domain knowledge. However with
the presence of partially labeled data, we develop a method
that achieves better performance by estimating parameters in
potential functions from the labeled data. In the next part,
we discuss how to relax our model assumption to make our
method more robust and how to apply Bayesian optimization
to tune the parameters in node potentials and edge potentials.

B. The adaption of belief propagation algorithm

This section details how to incorporate transaction informa-
tion and observed labels to achieve our objective of detecting
fraudulent cash-out.

1) Transaction information: Transaction between con-
sumers and shops are categorized into different types based
on their amount. Then we model the edge potential between
ic and js in the Markov Random Field as following:

ψicjs(Xic , Xjs) =
1

1 + e
∑p

1 αkXic
Xjs

mkXic
Xjs

(6)

where p is the number of all possible types of transactions
and mkXicXjs

is the number of kth type transactions between
vertices ic and js and αkXicXjs

is the parameter that indicates
hemophilic relation among shops and consumers for the kth

type of transaction.
2) Consumers label: In the Markov Random Field model,

the known label can be directly formulated into the generative
model. More specifically, for known-fraudulent consumers, we
freeze their node potential φ(Xic = 1) to be 1, so the message

Fig. 3. ROC curve for shops. Dark red line is the average ROC curve over
10 experiments and light red lines are ROC curves for each experiment.

passed from a known-fraudulent consumer ic to a shop js takes
the following form:

micjs(Xjs) = ψicjs(Xic = 1, Xjs)
∏

ks∈∂ic\js

mksic(Xic = 1)

(7)
where ∂ic represents the neighbors of consumer ic. Then the
marginal probability for a known fraudulent consumer ic, by
applying BP, is 1. In practice, it is more desirable to relax the
model and set node potential for labeled consumer as:

φ(ic ∈ V lc ) =
{
βlc, for Xic = 1 (8a)
1− βlc, for Xic = −1 (8b)

and node potential for unlabeled consumer as:

φ(ic ∈ Vc\V lc ) =
{
βuc , for Xic = 1 (9a)
1− βuc , for Xic = −1 (9b)

where βuc < βlc < 1. These parameters are estimated by
applying Bayesian Optimization.

3) Shops label: Labeled shops are used to estimate parame-
ters αkXicXjs

for edge potentials and parameters (βuc , β
l
c) for

consumer node potentials. Both the potentials of unlabeled
shops and labeled shops are set to be 0.5. Note here we do
not estimate parameters for shop node potentials, the reason
for which is discussed in section 4. Next we minimize the
loss function over labeled shops by tuning edge potentials
and consumer potentials with Bayesian optimization [26].
More details are discussed in the next section. This offers
two advantages: first, by tuning parameter in the Markov
Random Field, our algorithm efficiently uses the information
carried by different types of transactions thus achieves good
performance; second, instead of putting extreme value 0 or
1 for labeled shops and consumers, the shop potentials and
consumer potentials are trained relatively neutral to avoid the
undesirable chain reaction that changes beliefs dramatically.

C. estimation of parameters

In our algorithm, parameters in edge potential and node
potential are estimated by the following procedures.
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• First, given a set of parameters (αkXicXjs
, βuc , β

l
c), by

applying BP, the marginal probability of a shop js being
fraudulent is obtained.

• Then we calculate the value of a loss function L over all
labeled shops based on the obtained marginal probability.
The choice of the loss function L is discussed in details
later.

• Last, Bayesian optimization is used to find the optimal
solution to the following optimization problem:

(αkXicXjs
, βuc , β

l
c) = argmin

αkXic
Xjs

,βu
c ,β

l
c

L(js|js ∈ V ls ) (10)

Note that after applying BP, no explicit expression of the loss
function L can be obtained in terms of (αkXicXjs

, βuc , β
l
c),

therefore Bayesian optimization [23] is used to find the optimal
solution. It seems plausible to estimate parameters for shop
node potentials as well however this approach results in an
unstable algorithm. More details are discussed in section 4.

An alternative approach is expectation-maximization (EM)
algorithm [27]. More specifically, we try to maximize the
marginal likelihood of observed labels:

P{Xic , Xjs |ic ∈ V lc , js ∈ V ls }

=
∑
{S}

1

Z

∏
js∈Vs

φ(Xjs)
∏
ic∈Vc

φ(Xic)
∏
i,j∈E

ψicjs(Xic , Xjs)

(11)

with respect to {S}, α, β, where {S} is the set of all possible
joint states of unlabeled consumer ic ∈ Vc\V lc and unlabeled
shop js ∈ Vs\V ls , α is the set of parameters in edge potential
and β is the set of parameters in node potential. In E step,
by applying BP, we maximize P{Xic , Xjs |ic ∈ V lc , js ∈ V ls }
with respect to s and calculate the optimal q{S} ,where q{S}
is the distribution for {S}, and in M step, holding q{S}
constant, we maximize P{Xic , Xjs |ic ∈ V lc , js ∈ V ls } with
respect to α, β. We iterate these two steps until the parameters

Fig. 4. Precision-Recall curve for shops. Dark red line is the average
Precision-Recall curve over 10 experiments and light red lines are Precision-
Recall curves for each experiment.

converge. EM algorithm is designed to find parameters corre-
sponding to a local maximal of likelihood function, however
when the likelihood function is not correctly specified, the
good performance of EM algorithm is not guaranteed. In our
paper, we prefer the more robust algorithm that maximizes a
goal oriented loss function L by applying Bayesian optimiza-
tion to the EM algorithm.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate our algorithm with bipartite
consumer-shop network. The raw data are collected from JD
Finance. The network consists of all 230, 238 consumers and
201, 289 shops, and 2.91 million transactions among them. We
show that our algorithm effectively detects fraudulent shops by
passing beliefs along the bipartite network and estimating edge
potentials iteratively. We also evaluate the influence of multiple
factors, including the parameter settings for edge potentials
and node potentials, number of sampled nodes and choice of
loss functions. One-fourth of the labeled vertices were used
for testing, and the rest were used as training data. Without
specification, all true positive rates (TPR) provided in this
paper were measured at 5% false positive rate (FPR).

A. Experiment setup

In the basic experimental setup, multiple initial guesses for
the parameters are generated to prevent local optimal solutions.
Bayesian optimization is conducted for each initial guess and
returns a respective set of estimated parameters. The set of
parameters leading to the smallest loss function is chosen
as the optimal solution. The algorithm attains an average
TPR of 92.47% over 10 random 4-fold cross validations
as shown in Fig.3. To create smooth ROC curve, 10, 000
of threshold values are generated such that vertices with
higher posterior probability than the thresholds are classified as
fraudulent shops. The ROC curve, AUC of ROC, precision-
recall curve and TPR are used to measure the performance
of the algorithm. Fig.4 shows the precision-recall curve for
shops achieved by our algorithm. F1-score can be calculated
corresponding to the different choice of threshold value. The
highest F1-score achieved in Fig.4 is 0.8955, where the
corresponding precision is 0.8962 and the corresponding recall
is 0.8947.

B. Comparison between different loss function

In this section, we discuss the choice of loss function
in eq(10). In the context of fraud detection, goal driven
approaches are sometimes desirable, therefore we tune the
parameters in the MRF by either maximizing TPR or AUC
of ROC or minimizing deviance.

Fig.5 shows the performance of our algorithm with different
choices of loss function. Interestingly, the algorithm converges
to the same set of parameters for all three loss functions
in all 10 experiments when allowing Bayesian optimization
to run sufficient number of iterations. In each experiment,
we randomly choose three-fourth of nodes as training data
and remaining one-fourth as testing data. The performance
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Fig. 5. A comparison of different loss function. Dark bars represent the performances of the algorithms after running sufficient number of iterations of
Bayesian optimization, and light bars represent the performances of the algorithms after running 30 iterations of Bayesian optimization. The performances
are measured in Deviance, TPR and AUC. (a) The performance of algorithm that maximizes TPR; (b) The performance of algorithm that minimizes TPR;
(c) The performance of algorithm that maximizes AUC

of the algorithm with these optimal parameters is represented
by dark bars in Fig.5. One possible reason is that when
conducting Bayesian optimization, parameters are restricted
and the optimal solution obtained by Bayesian optimization is
on the boundary. Relaxation of some restrictions could lead to
different optimal parameters for different loss function; but
since the algorithm has already achieved a good accuracy,
it is not our primary interests to run Bayesian optimization
over a larger parameter space. On the other hand, although
the algorithm converges to the same set of parameters, it
converges to the set of optimal parameters with different rates
under different loss functions. In all of the 10 experiments,
the algorithm that maximizes AUC is always the fastest to
converge to the optimal parameters. In real world application,
we would prefer to limit the maximal number of iterations in
the Bayesian optimization. If we limit our optimization to 30
iteration, using AUC as the loss function (shown in Fig. 5c)
achieves good average performance among all three different
measures and the variances are small. When TPR (shown in
Fig. 5a) is chosen as the loss function, the performance of the
algorithm is relatively unstable with respect to the deviance of
the results. When deviance has been minimized, the algorithm
has poor performance with respect to TPR. Hence in our
algorithm, we maximize AUC over the labeled shops to tune
the parameters in Markov Random Fields

C. impact of edge potentials

Most prior research on fraud detection, malware detection
and Sybil detection model edge potential as a function of node
labels. This parsimonious way of modeling ignores informa-
tion carried by different types of edges and is therefore limited
when prior information of node potentials is not available. In
our algorithm, edge potentials are modeled in more sophis-

ticated way as shown in eq(4). Fig.6 shows the performance
of the algorithm under different edge potential models. The
more sophisticated model outperforms the parsimonious one
in all three measurements. The results indicate that frequency
of transaction and type of transaction carry extra information
that should be included into the edge potentials. Another
advantage of our model is that by modeling different types
of transactions, we can understand which type of transaction
is more likely to be fraudulent, and financial facilities would
use this information to regulate fraudulent merchants.

D. impact of the node potentials

As discussed in the previous section, to make our algorithm
more robust, the priors for labeled fraudulent consumers and
unlabeled consumers are set to be βuc , β

l
c and determined

by Bayesian optimization. When sampling different numbers
of labeled nodes to train the model, the optimal βlc falls
in the range [0.6, 0.7], which is in contrast with the choice
of assigning known-fraudulent node a prior equal to 1 in
Markov random fields model. We hypothesized that this is
because that a small portion of the labeled nodes can’t be
modeled accurately by Markov random field. When assigning
these nodes priors based on Markov random fields model,
the neighbors of which are influenced by the strong priors
and therefore wrongly labeled. Therefore, by tuning node
potentials, our algorithm avoids this undesirable chain reaction
and achieves better TPR.

E. impact of the number of labeled nodes

We run a series of experiments to test the impact of the
number of labeled nodes. In each experiment, we randomly
select 0%, 10%, 25%, 50% or 100% labeled consumers and
10%, 25%, 50% or 100% labeled shops as labeled nodes and
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Fig. 6. ROC curves of the algorithms under different edge potential models.
Red line corresponds to our model. Dark blue and light blue lines correspond
to two parsimonious models used in previous studies [25], [28].

treat the rest nodes as unknowns. Table 2 shows that our
algorithm is robust to the number of labeled nodes.

When only a small fraction of the labeled data are sampled
and used as input, our algorithm still performs decently.
For ground truth nodes, our algorithm recovers the labels
of fraudulent shops with 91.14% accuracy when controlling
TPR at 5%, given only 10% labeled shops as input. We
hypothesize that even though only a small fraction of nodes is
labeled, the average geodesic distance between a node and its
nearest labeled node is small. For example, in a random graph
whose average degree is 10, when given 1% labeled data,
the average geodesic distance between a node and its nearest
labeled node is around 2 by some simple calculation. This fact

TABLE II
IMPACT OF THE NUMBER OF LABELED NODES WHEN SHOP POTENTIALS

ARE SET TO BE 0.5

Pm = 10% Pm = 25% Pm = 50% Pm = 100%

Pc = 0% 0.9114 0.9033 0.8967 0.9127
Pc = 10% 0.9156 0.9036 0.8965 0.9099
Pc = 25% 0.9237 0.9116 0.9086 0.9288
Pc = 50% 0.9250 0.9123 0.9196 0.9148
Pc = 100% 0.9012 0.9008 0.9071 0.9248

TABLE III
IMPACT OF THE NUMBER OF LABELED NODES WHEN SHOP POTENTIALS

ARE ESTIMATED

Pm = 10% Pm = 25% Pm = 50% Pm = 100%

Pc = 0% 0.7960 0.8815 0.9196 0.9306
Pc = 10% 0.8055 0.9195 0.9108 0.9206
Pc = 25% 0.9163 0.9227 0.9226 0.9271
Pc = 50% 0.8362 0.9047 0.9225 0.9305
Pc = 100% 0.8570 0.9092 0.9313 0.9348

suggests that a small fraction of labeled nodes would provide
more information than we thought. Belief propagation will
efficiently use the information of network topologies therefore
results in an effective algorithm. However as [22] pointed
out, there should be at least one labeled node in each local
community; otherwise belief propagation is unable to infer the
nodes label.

F. impact of the estimation of parameters for shop node
potentials

Our algorithm does not estimate parameters for shop node
potentials, instead, shop node potentials are set to be 0.5. It
might sound plausible to estimate the parameters for shop
node potentials, however a direct application of Bayesian
optimization always yields trivial degenerate solutions where
prior for fraudulent shop is 1 and prior for good shop is 0.
This is because the loss function is defined over the labeled
shops. To overcome this problem, we need an extra procedure
to estimate those parameters. More specifically, instead of
conducting 4-fold cross validation, we have to spare another
one-fourth of the data to determine the parameters. We divide
the data into four quarters; the first one-half of the data are
used as training data and posterior distributions for the rest
of the nodes are calculated, another one-fourth of the data
are used for calculating the loss function and the last one-
fourth of the data are used for cross-validation. The parameters
that minimizes the loss function are estimated by Bayesian
optimization. When building a less biased model, less data
are available to estimate the parameters. The selection of
algorithm reflects the trade-off between bias and variance.
As shown in Table 3, when using all the labeled data as
input, the algorithm that estimates extra parameters for shop
node potentials outperforms the original algorithm, however
its performance deteriorates sharply as the number of labeled
nodes decreases. To obtain a more robust algorithm, we choose
not to estimate the parameters for shop node potentials.

V. CONCLUSION AND FUTURE WORK

In this study, we proposed an algorithm that infers the
network by graph mining and semi-supervised learning. We
carefully use the nodes label in the bipartite network and
combine the information of transaction details into our model.
We evaluate the efficiency of our algorithm with JD data set.

A. Conclusion

We have the following observations:
• Our algorithm is efficient. We achieve 92% TPR while

controlling FPR at 5% level in JD dataset. The algorithm
is scalable. In a sparse network, the total complexity of
Belief propagation is O(n) and since our parameter space
is relatively small, the total complexity after applying
Bayesian optimization is still O(n).

• Our algorithm sheds light on regulation for the fraud-
ulent merchants. It is often the case that the fraudulent
merchants conduct fraudulent transactions as well as legal
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business. By eliminating high risk transactions and keep-
ing safe transactions, financial facilities can maximize
their capital gains.

• Our algorithm is robust even if only a small number of
nodes are labeled. In real world, ground truth is hard to
obtained. Our algorithm provides an attractive way to use
the limited observed labels.

B. Future work

• In the current model, edge potential isn’t a function of
node degree. When the degree distribution follows power
law, which is often the case in real world network, it
might be more desirable to correct the edge potential with
node degree.

• When parameter space grows, tuning parameters for edge
potential and node potential could be computationally
expensive by simply applying Bayesian optimization. A
fast optimization algorithm would be needed.

• In practice, how to allocate the budget of labeling nodes
in a network is an important question. The nave strategy
to randomly samples nodes from the network and labels
them is inefficient. Better strategy should take advantage
of the network structure.

• This algorithm can be developed into an ensemble ap-
proach. In our framework, it is possible to incorporate
the information collected by other existing fraud detection
algorithms into the node potentials. However, the optimal
way to incorporate this information
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