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In this article, we argue for the usefulness of relational event network analysis to study online com-
munication networks. Unlike other network analytic techniques that require online communication
data to be summarized prior to analysis, relational event network analysis uses un-summarized
time-stamped data to track the dynamic evolution of communication networks. To illustrate, we
use relational event network analysis to analyze the evolution of a communication network within
the virtual world Second Life. Results suggest that there are different patterns of communication
among nonfriends and friends within the network. Nonfriends tend to communicate with those they
have communicated with in the past, reciprocate communication, and close communication triads.
Friends tend not to communicate with those they have communicated with in the past, instead prefer-
ring to reciprocate communication and close triads. We discuss implications for the study of online
communication and identify directions for future research using relational event network analysis.

Online communication data and advanced network analysis techniques have enabled scholars to
examine communication patterns and practices with increasing precision and detail. In recent
years, the prevalence of automated online data collection, including social network data collected
passively from social media, online games and virtual worlds, have only expanded these possi-
bilities. Although studies of social networks in Computer Mediated Communication (CMC) date
back 20 years or more (Garton, Haythornthwaite, & Wellman, 1997), prior research has focused
almost exclusively on static networks, or “snapshots,” of communication patterns aggregated or
taken at a single point in time. These snapshots mask the dynamic processes that produced the net-
works of study, and as a result, much of what we know about online communication is predicated
on assumptions of homogeneity over time.
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In this article, we argue that online communication is better understood as a series of relational
events and introduce a new method for analyzing relational event networks that allows communi-
cation researchers to directly examine how the dynamic, heterogeneous communication processes
influence the creation, maintenance, and dissolution of communication ties over time. This tech-
nique was developed by Butts (2008) to study communication among emergency first-responders
and later extended by Brandes, Lerner, and Snijders (2009) to examine to predict military hos-
tility and cooperation among nation states. We argue that the technique is especially well suited
for contemporary CMC data and will enable more accurate theorizing about how communication
processes produce patterns of communication observed in CMC networks.

The remainder of this article is organized in five parts. First, we give a brief overview of
how social network analysis methods have been applied to the study of CMC. Second, we dis-
cuss the limitations of prior work, highlighting how analytic techniques can obscure available
detail in CMC data. Third, we introduce a new technique called relational event network anal-
ysis (Brandes et al., 2009; Butts, 2008) and describe how the technique can overcome some of
the limitations of prior work. Fourth, we demonstrate the strengths of relational event network
analysis and provide an example of its implementation using communication network data drawn
from the virtual world Second Life as an example. Finally, we discuss the results of the example
analysis and describe the benefits of relational event network analysis for the study of CMC more
broadly.

SOCIAL NETWORK ANALYSIS AND CMC

In their seminal paper, Garton et al. (1997) argue for the use of social network analysis to under-
stand CMC. Social networks are composed of a set of two or more individuals (nodes) connected
by one or more relationships (ties). There are a number of different ways to conceive of nodes
and ties in CMC (Rosen, Barnett, & Kim, 2011). For example, nodes in a CMC network may
be individual people connected by acts of communication (e.g., sending an email, posting on a
Facebook wall), websites connected by hyperlinks, or user accounts connected by encoded rela-
tionships (e.g., Twitter followers, Facebook friends). Social network analysis examines the social
structure represented by nodes and ties, describing and/or statistically modeling the particular
pattern of nodes and ties in an observed network.

Social network analysis offers a number of advantages over traditional statistical approaches
for the study of CMC. Because network analysis involves modeling individuals embedded in
social contexts, it is well suited for the study of phenomena that originate across analytic lev-
els (individual, dyad, whole-network) (Monge & Contractor, 2003). Social network analysis is
also uniquely able to model the interdependence of online communication. Unlike other data
collected from individuals, CMC data is relational, involving two or more people and the mes-
sage(s) they exchange. The decision to communicate online depends, in part, on motivations of
the message sender, the receiver, and the social context they are both embedded in. Although
more traditional statistical techniques assume independence among data, social network analysis
approaches model these interdependencies directly. Finally, although it is possible to study the
sparse, unbounded networks characteristic of CMC using other approaches, social network anal-
ysis focuses on these configurations, with well-developed statistical techniques for handling large
amounts of missing data (Garton et al., 1997; Haythornthwaite, 1996).
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Since Garton and colleagues’ call, many researchers have used network approaches to study
CMC (see Lazer et al., 2009, for review). Prior work typically uses one of three approaches. The
first approach focuses on networks from the perspective of individuals, or ego-networks. Ego-
networks are a particular type of social network representation that consists of one individual
(the ego) and his/her direct ties to other individuals (the alters). For example, a Facebook user
account can be represented as the ego-network of an individual Facebook user and the ties among
his/her Facebook friends. Researchers focusing on CMC ego-networks have made a number of
useful observations. Prior work has determined that online ego-networks have approximately the
same structure of nodes and ties as offline ego-networks, and that the number of active ties in
online ego-networks, on average, does not differ significantly from the number of active ties in
offline ego-networks (Arnaboldi, Conti, Passarella, & Pezzoni, 2012). Researchers have also dis-
covered that individual characteristics including age, gender and personality are all predictive
of the number of ties in online ego-networks (Amichai-Hamburger & Vinitzky, 2010; Thelwall,
2008). Researchers have also determined that diverse, highly interconnected networks are asso-
ciated with a number of benefits, including social support and access to social capital (Ellison,
Steinfield, & Lampe, 2007; Stefanone, Kwon, & Lackaff, 2011).

A second network-based approach to studying CMC involves describing the characteris-
tics of large CMC networks as a whole, where the unit of analysis is an entire network,
rather than individuals or dyads within the network. Mislove, Marcon, Gummadi, Druschel,
and Bhattacharjee (2007), for example, discovered that many online networks are character-
ized by the hub-and-spoke pattern of relationships observed in offline networks, where a small
number of popular individuals connect a larger number of less popular individuals in a sin-
gle network. This finding has been confirmed elsewhere (Ahn, Han, Kwak, Moon, & Jeong,
2007), and also extended to include signed networks consisting of positive and negative rela-
tionships (Leskovec, Huttenlocher, & Kleinberg, 2010) and to describe distinct types of CMC
users, based on the structure of the network surrounding them (Kumar, Novak, & Tomkins,
2010).

More recently, researchers have begun to use inferential network statistics to test hypotheses
about how the particular arrangement of nodes and ties in CMC networks came to be. These
analyses can be performed at any level of analysis (individual, dyad, whole-network) or across
many levels at once (Monge & Contractor, 2003). For example, some researchers have used hier-
archical regression modeling to examine the factors involved in creating network ties and/or the
effects of network structure on the actors involved (Ratan, Chung, Shen, Poole, & Williams,
2010; Shen, Monge, & Williams, 2012). Others have used a specialized class of inferential
statistics for networks called exponential random graph modeling (ERGM) to perform statisti-
cal tests of the likelihood of certain patterns of communication and collaboration within online
networks (Hunter, Handcock, Butts, Goodreau, & Morris, 2008; Keegan, Gergle, & Contractor,
2012; Shumate & Palazzolo, 2010). These techniques allow researchers to make statistical infer-
ences about dynamic network processes that emerge over time, but they rely on static network
data. Neither hierarchical regression modeling nor ERGM allow for the direct observation of
dynamic network processes.

Less frequently, researchers have attempted to map online communication network dynam-
ics using panel data, drawing inferences about changes observed in network configurations
among the same set of individuals observed at two or more points in time (Lewis, 2011;
Lewis, Kaufman, Gonzalez, Wimmer, & Christakis, 2008). One inferential statistical technique,
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stochastic actor-oriented network analysis (SIENA), is used to examine how network struc-
ture influences the behavior of the individuals within a network over time (Snijders, 2001).
Researchers using stochastic actor-oriented network analysis sample data from the same net-
work at multiple points in time (T1, T2, . . . ) and use statistics to infer what caused the network
to change from a particular configuration of nodes and ties at T1 to a new configuration of nodes
and ties at T2.

For example, Hurme, Veermans, Palonen, and Järvelä (2008) used stochastic actor-oriented
network modeling to investigate whether individuals’ participation in online class discussion
forums was influenced their demographic attributes, their position in the discussion network,
or both. By examining changes in the communication network on a weekly basis over the course
of five weeks, they discovered that network structure, and not individual attributes, accounted
for most of the variance in participation patterns. Specifically, they found betweenness central-
ity (measured as the average number of links between any given node and all other nodes in
the network) and reciprocity were better predictors of participation than individual demographic
attributes including gender and class rank (Hurme et al., 2008). These conclusions speak to pro-
cesses that happen over time, although notably, the exact nature of these processes is inferred, not
observed.

Recent advances in exponential random graph modeling techniques (including the software
packages LPNet and TERGM) have also enabled the addition of time-based information into
network models (Hanneke, Fu, & Xing, 2010; Krivitsky & Handcock, 2014; Wang, Robins, &
Pattison, 2006). Similar to stochastic actor-oriented models, these techniques use panel data or
indicators of the duration of network ties (e.g., how long a tie has existed) to model longitudinal
changes in network structure. The chief distinction is that LPNet and TERGM are tie-based net-
work models, used to estimate the formulation and dissolution of network ties over time, while
stochastic actor-oriented modeling is actor-based, used to estimate the behavior of actors within
the network over time.

Stochastic actor-oriented network modeling, LPNet and TERGM all rely on modeling static
network snapshots to make inferences about the dynamic processes that caused the network to
change over time. When these approaches are applied to the study CMC, they focus on stable,
long-term network structures and ignore the dynamic, short-term patterns of communication that
generate those structures. Consider, for example, two partners in a stable and frequent commu-
nication relationship: period after period, they stay in touch, communicating often and replying
quickly to one another. Snapshot-based network models can predict transitions into and out of
such stable relationships, but they have difficulty capturing the importance of factors such as
reciprocal communication for ongoing relationship maintenance.

This limits theorizing about CMC to aggregate patterns of communication, and eliminates the
possibility of explaining any variance that might occur during, or resulting from the processes
that produce those patterns. It is also an awkward fit for many contemporary CMC datasets,
which directly capture communication events (such as individual tweets or IM messages), but
only loosely capture the status of relationships between users, if they capture relationship status
at all (Gilbert & Karahalios, 2009). Instead, to examine networked CMC processes and improve
theoretical precision, researchers can use of an emerging class of network analytics that uses
relational event data to track the dynamic evolution of online communication networks (Brandes
et al., 2009; Butts, 2008).
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A NEW APPROACH: RELATIONAL EVENT NETWORK MODELING

Relational events are interactions between people that happen at specific points in time. For exam-
ple, when one individual communicates with another, that act of communication with a sender,
a receiver, and a moment in time is a relational event. The aggregation of these relational events
across a group of people communicating with one another can be represented as a relational event
network, and a new class of network statistics allows for relational event network modeling over
time.

Advantages of Relational Event Network Modeling for CMC

There are at least two reasons why relational event network modeling can improve the study of
CMC. The chief advantage to relational event network analysis over other techniques is that it can
explicitly identify the time dependence of network communication patterns. For instance, one of
the most basic time-dependent patterns in CMC is inertia—the tendency for people to continue to
communicate with those they have communicated with in the past. Traditional network statistics
have difficulty capturing this tendency, and therefore the effect of inertia is usually overlooked in
models of CMC behavior. Event-based network analysis allows researchers to accurately model
the effect of inertia, as well as higher-order time-based communication patterns such as reci-
procity and triadic closure, which have been modeled inferentially based on observations of static
networks in the past.

Although limitations in data collection may have prevented the effective use of event-based
techniques in the past, online data present an ideal opportunity to examine communication events,
refining our understanding of how communication networks emerge and evolve. To that end, rela-
tional event network analyses enable researchers to leverage the uniquely detailed data available
for many online communication networks, retaining detail about each act of communication as
it occurs. In the past, network data, both online and offline, tended to be composed of relational
states such as whether or not a given pair of individuals reported being friends. Increasingly, as
communication moves online, network data include records relational events in addition to (or
sometimes, instead of) relational states. In many CMC datasets, in addition to records of rela-
tionships among individuals (e.g., Facebook friends, Twitter followers), we also have records of
specific acts of communication among individuals (e.g., wall posts, re-tweets). Moreover, unlike
in the offline world, where records of specific acts of communication are difficult and expensive
to collect, records of online communication are often collected and cataloged automatically and
unobtrusively. As a result, researchers now have access to pristine records of online communi-
cation where each instance of communication is logged, time-stamped, and stored in a database
awaiting analysis.

Prior studies that have used panel and/or summary data to examine online communication net-
works have largely done so artificially; sampling panels or creating summary data by aggregating
more detailed relational event records, mainly because methods for longitudinal network analysis
could not previously handle any other type of input. For example, although they presumably had
access to each individual record of communication across all five observed weeks, Hurme and
colleagues (2008) examined changes between five network snapshots, each taken a week apart,
rather than examining all of the observed data directly. Event-based network analysis retains the
full detail available in records of online communication, treating each instance of communication
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as a variable in the overall evolution of the communication network. Therefore, at minimum, the
technique is better suited to the level of detail available in CMC data, and an event-based network
analysis approach may also enable new and/or newly detailed opportunities to understand the
micro-processes involved in communication networks that are obscured using other techniques.

Conceptualizing Relational Event Network Modeling

When two individuals communicate in a group context, their communication patterns will depend
not only on their own characteristics at that moment, but also on the history of their communi-
cation patterns, as well as the communication patterns between everyone else in the group. That
is, any given relational event within a relational event network is simultaneously the dependent
variable predicted by all prior relational events in that network, and the independent variable pre-
dicting all future relational events in that network. These event-based dependencies historically
have been ignored in network analysis. Even stochastic actor-oriented network analysis, which
examines the longitudinal evolution of networks, models the persistence and change of networks
of static ties and not of transient relations (Snijders, 2001).

Relational event network analysis models relational event dynamics directly, examining how
past relational events influence future relational events within a network observed over time. The
technique was developed by Butts (2008) to analyze network dependent, time-stamped event data
and was later applied to human and organizational interactions by de Nooy (2008) and Brandes
and colleagues (2009). In a relational event network model, an event happens when one indi-
vidual communicates with another individual in the network at a specific time. Each event in
the model depends on the history of past events, and, in particular, on the network structure of
those past interactions. For example, in Butts’s (2008) original application of the model, he exam-
ined emergent patterns of communication among emergency first-responders to the 9/11 terrorist
attacks on the World Trade Center in New York City. Based on a static snapshot of the network of
communications among the emergency first-responders immediately following the attacks, Butts
noticed several hubs in the network that did not correspond with organizational role, as might be
expected; that is, the people coordinating the communication were not organizational leaders. He
proposed two competing explanations for the emergence of these hubs. On one hand, the hubs
may arise as a function of heterogeneity in the tendency to communicate. In an emergency situa-
tion, some responders may communicate more than others (either because of personality, training
or both), and those that communicate most end up becoming hubs by virtue of communicating
more frequently than everyone else. On the other hand, it may be that the hubs simply communi-
cated first and became more salient targets for communication within the network as a result. That
is, the hubs may have naturally had a similar tendency to communicate as others in the network,
but because they idiosyncratically communicated first, they ended up becoming the recipients of
more communication than others, and emerged as hubs as a result (Butts, 2008). Although tra-
ditional static network analyses cannot discriminate between these possibilities, using relational
event based network modeling, Butts determined the latter explanation better accounted for the
emergence of hubs in the network. Early patters of communication replicated over time, leading
to the emergence of hubs within the first-responder network.

In a CMC communication network, an event-based network model could be used to explain a
number of emergent communication patterns, including the overall tendency to communicate and
the presence (or absence) of theoretically specified patterns of communication within the network,
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such as reciprocal dyads, closed triads, or hubs. To do so, the model assumes that one person
communicates with another at a rate (or frequency) that is determined, in part, by the structure
of the whole communication network, and the model attempts to estimate which structures in the
network best determine the frequency of communication. Conditional on the event history, the
possible interactions among all individuals at any given moment are assumed to be independent
of one another—two people communicate without considering who else in the network might
want to do so at the same time. The relational event network model estimates the frequency
at which any given pair of individuals in the network will communicate with one another as a
function of the all of the past communication events.

Half-Life

Central to the relational event network model is the idea of a “half-life” on communication
events. The half-life is added to the model estimation to account for the diminishing effects of
communication events over time. The reasoning is that events that just happened are more likely
to influence communication behavior than events that happened a long time ago. To accommodate
this idea, each time a specified half-life of time passes, the weight of statistics occurring outside
that half-life are halved. This half-life parameter is not estimated by the model but is a parameter
chosen by the researcher to maximize fit and the time scale of interest for the study (see Model
Selection below for details on our procedure).

Model Formalization

This article relies on the relational event network analysis formalization developed by Brandes
and colleagues (2009). For completeness, we reproduce the details of that formalization and
described in terms of a communication network, here. In a relational event network model, inter-
actions between each pair of individuals follow a Poisson process whose rate depends on the
network structure of past interactions in the whole network (not just between to focal pair) as
well as other covariates (such as time spent online by each person). The rate of communication
for each pair is held constant between events. Once an event occurs between any pair, all pairs in
the network (potentially) update their rate of communication. This model also accounts for right-
censored observations of the many pairs that never interact, factoring in the time that elapsed
without any interaction. Finally, the communication network uses weighted communication ties,
representing an accumulated history of communication between two people.

In more detail, suppose that person a sends a chat c to person b at time tc. At a later time t, the
weight of the tie wt(a,b) from a to b will be equal to the number of all their past chats from a to
b decayed by an exponential half-life parameter τ . Taking C(a,b) as the set of all chats from a to
b, the weighted volume of communication between two actors up to time t can be written as

wt (a, b) =
∑

c∈C(a,b),tc≤t

ln 2

τ
· exp

(
− (t − tc) · ln 2

τ

)

We refer to the whole network of ties wt(a,b) at a given time t by Gt. The rate of communication
from person a to person b is determined by statistics derived from individual characteristics or
from the structure of the network. We denote the k such statistics by si, and refer to the coefficients
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measuring their effects by θi. For example, if si is the statistic representing reciprocity (weighted
communication from b to a), positive θi signifies that reciprocity increases the rate at which a
chats to b. The rate of communication, λt (a, b), from a to b at time t is then given by

λt (a, b) = exp

(∑k

i=1
θi · si (Gt; a, b)

)

This rate is the parameter of an exponential waiting process determining time to the next
communication event on the dyad. To keep the model tractable, this hazard of communication is
held constant between events, so that t is fixed to the time of the last event in the whole network.

Combining the chat rates of all dyads in the network, we can calculate the likelihood of the
observed history of chat events C by:

L =
∏
c∈C

⎛
⎝λtc (ac, bc) · exp

(−Δt · λtc (ac, bc)
) ·

∏
a′ �=ac,b′ �=bc

exp
(−Δt · λtc

(
a′, b′))

⎞
⎠

L =
∏

c∈C

(
λtc (ac, bc) · exp

(
−Δt ·

∑
a,b∈A

λtc (a, b)
))

Here, A is the set of all individuals in the network and Δt is the time elapsed since the last event.
This formulation allows us to examine a rich set of possible mechanisms, looking not only at

the local or global communication structure, but at individual characteristics and multiple modes
of interaction as well.

CASE STUDY: SECOND LIFE

To demonstrate how relational event network analysis can be used to model and understand
the evolution of an online communication network, we apply the technique to data drawn from
the virtual world Second Life. Specifically, we use relational event network analysis to examine
the processes that lead to more communication among friends than nonfriends. Several studies,
including our own previous qualitative research within Second Life, have revealed that people
spend a disproportionate amount of time communicating with friends online (Boellstorff, 2008;
Foucault Welles, Rousse, Merrill and Contractor, 2014; de Nood & Attema, 2006). Although
that observation is not especially surprising—indeed, it makes intuitive sense that people would
communicate more with friends than nonfriends—when we consider the processes that may lead
to more communication among friends, several alternative explanations emerge. These processes
are discussed in detail, below. Relational event network modeling is uniquely able to evaluate the
extent to which various processes individually and collectively contribute to the overall volume
of communication among friends and nonfriends in Second Life.
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Dyad Inertia

The most basic explanation for increased communication with friends is that people simply get
into the habit of communicating with their friends. That is, because friends communicated more
in the past, they continue to do so in the future (Hannan & Freeman, 1977). In a relational event
network model, this effect is called inertia and it is measured by testing whether past communi-
cation predicts future communication for the same pair of people in the network (Brandes et al.,
2009). This conditional pattern of communication is not often tested in communication research,
and is an excellent example of the sort of process-based pattern that relational event network
analysis can model directly. There are a number of reasons why dyad inertia may not operate in
an online network as it does offline. For example, without the demands of face-to-face communi-
cation residents of Second Life may not feel compelled to continue communication as they would
in the offline world or, similarly, residents who have communicated in the past may be co-present
(logged into Second Life) less frequently than would be normal in offline settings. Nevertheless,
we hypothesize (H1) that past communication will predict future communication within the net-
work in general and (H2) past communication will predict future communication among pairs of
friends.

Reciprocity

Beyond simple inertia, a second factor that may lead to more communication among friends is
reciprocity. A number of social scientific studies have demonstrated that reciprocity is normative
in many communication settings (e.g., Berger & Calabrese, 1975; Gouldner, 1960; Roloff, 1985).
If a sender sends a message to a receiver, the receiver is very likely to send a message back
to the sender in the future. A number of reasons have been given why this is true in the offline
world, ranging from simple conversational turn-taking, to the development of trust and rapport, to
a cognitive preference towards relational balance (Epstein, 1983; Sacks, Schegloff, & Jefferson,
1974; Wheeless, 1976).

The literature indicates that the norm of reciprocity is especially potent among friends.
Because reciprocity is associated with trust and rapport, it has been noted to be especially
important in the establishment and maintenance of friendship relationships in the offline world
(Derlega, Wilson, & Chaikin, 1976; Hallinan, 1978). So, it may be the case that the increased
volume of communication among friends originates in reciprocal exchanges. That is, reciprocity
begets reciprocity among friends, resulting in more overall communication over time.

Although we expect reciprocity patterns to hold in the online world as they do offline, the
anonymous nature of communication in Second Life, as well as the ability to ignore messages
without specifically refusing to reciprocate may diminish the normative tendency towards recip-
rocal communication in Second Life. Nevertheless, we predict that (H3) communication ties will
tend to be reciprocated over time, and (H4) that reciprocity among friend pairs will be more
common than reciprocity in general.

Triadic Closure

A third factor that may increase the volume of communication among friends is triadic closure.
Like reciprocity, a wide range of social scientific studies have observed triadic closure effects in
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a number of settings (e.g., Burt, 2005; Cartwright & Harary, 1956; Granovetter, 1973; Heider,
1958; Kossinets & Watts, 2006). Colloquially, this effect is described as “a friend of my friend is
a friend,” and triadic closure is achieved when two actors who share a common communication
contact subsequently begin to communicate with one another. The reasons given for triadic clo-
sure are similar to those for reciprocity, with evidence suggesting that closed triads are associated
with trust and that they are more cognitively pleasing (Burt, 2005; Granovetter, 1983; Krackhardt,
1992).

Further, there is evidence that triadic closure may be especially likely when at least two of the
actors involved in the triad are friends (Espelage, Green, & Wasserman, 2007; Granovetter, 1983).
If this is the case, it suggests that communication may be germane to friendship groups. That is,
the increased volume of communication among friends is a function of the tendency for friends
to communicate in groups, resulting in more overall communication with friends over time.

Although there is some evidence that triadic closure is relatively less common online than
offline (Steinkuehler & Williams, 2006), we nevertheless hypothesize that (H5) triadic closure
will predict communication within the network over time, and that (H6) closure among triads of
friends will be more common than closure within the network in general.

Taken together, we expect that all of the hypotheses (H1-6) will contribute to explaining the
patterns of communication that emerge among friends and nonfriends in the virtual world Second
Life.

METHOD

To test the hypotheses outlined above, we used CMC data from the virtual world Second Life. The
data were collected unobtrusively by Linden Labs, the company that owns Second Life and given
to the authors for research purposes. Second Life is an immersive online virtual world where
users (called “residents”) interact with one another via avatars and can socialize, join groups,
own land, and build a wide range of objects. Unlike other virtual worlds and online games that
are plot-driven, Second Life has no overarching storyline or goal. Chiefly, residents join and use
Second Life to socialize (Boellstorff, 2008; de Nood & Attema, 2006).

There are two main ways to socialize in Second Life. First, residents can designate other resi-
dents as “friends,” which affords a variety of privileges, including being able to easily contact one
another, see one another online, locate one another in Second Life, and use one another’s virtual
possessions, depending on the level of friendship access granted. Residents may also form and
join groups. In Second Life, users form and join groups for a variety of reasons, including pur-
suing shared interests, engaging in role-playing, or starting businesses together. Although some
groups require a financial commitment to join, most often, residents can join groups by simply
expressing an interest. When a resident is a member of a group s/he can see a list of all other mem-
bers and, depending on his/her privileges, send messages to and receive messages from that list.
There is no requirement for residents to become friends with other group members, although they
may be somewhat more likely to select group members as friends over other random Second Life
residents for the simple fact that they have a mechanism for meeting and interacting with group
members. Likewise, there is no requirement for residents to communicate with group members,
although it is relatively easier to communicate with group members because of the contact list
provided.
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TABLE 1
Sample Relational Event Data Format

Sender Receiver Time Type

A B Day 1, 9:50 AM Message
A C Day 1, 9:55 AM Message
B A Day 1, 10:21 AM Message
B A Day 1, 10:24 AM Friend request
B A Day 1, 10:26 AM Message

Data

At minimum, to use relational event network analysis, a researcher must have time-stamped data
that indicate the sender and receiver of each relational event in a network of interest. Optionally,
the data may also include weights for each relational event, such as the number of characters in
a chat message (where the chat message is the relational event) and/or types for each relational
event, such as a collaborative or adversarial message. This format is similar to a network edgelist,
with the minimal addition of a time stamp for each event (edge) in the list. (See Table 1 for an
example of how relational event data can be formatted.) In this case, the sample data contain the
sender and receiver of each event, the time of the event, and the event type (message versus friend
request).

Data used to generate the sample for this analysis included records of relational (chat) events,
their time stamps, weights, and types. The data were drawn from complete server-side records of
online behavior collected on an ongoing basis between April 1 and July 22, 2009, for 9,962,359
Second Life residents. Data included the following:

Groups

The complete dataset included a record of every group in Second Life, identified by anonymous
group ID number. This list served as the sample space from which one group was drawn for
analysis (see sampling procedure description, below).

Group Membership

The dataset also included a list of all of the members of each group. This list was used to
generate the list of nodes in the network we analyzed.

Chat

The dataset contained complete, time-stamped records of private chat messages sent by Second
Life residents. Data files contained records of the sender and receiver of each chat, a time stamp
measured in tenths of seconds, and the total number of characters in each chat. The messages
served as the relational events in our network, with the number of characters per message serving
as the weights on the events.
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In Second Life, there are a number of ways to communicate including general chat not directed
at any particular individual (similar to posting in a chat room), announcements directed to par-
ticular groups (similar to sending an email to a listserv), and private chats directed at a particular
individual (similar to an IM). To send a private chat, a resident can either click on the avatar
of another resident who is co-present to initiate a chat, or send a message to a friend or group
member (who can be co-present or not) by selecting the relevant avatar’s name from the friend or
group contact list.

An individual “chat” includes all of the characters typed prior to hitting the “return” key, and
therefore chats may vary considerably in length, frequency, and synchronicity. Although private
chats can only be exchanged between users logged into Second Life, it is not necessarily the
case that chats are exchanged synchronously. For example, a user could type a long message of
several sentences or more, and send it to another user to read later. Or, alternatively, two users
may engage in a conversation where a series of short, contingent chats are exchanged quickly.
Private chats are not necessarily reciprocal, and the resulting chat networks are directed.

Friendship

The final data field used in this analysis included records of each friendship within Second
Life, as well as the in-game privileges set for each friendship. Friendships in Second Life are
always reciprocal, but in-game privileges are directed. The records of friendship were used to
generate the values on the relational events, where chats were valued “between friends” or “not
between friends.”

Sample and Network Specifications

The relational event network model is computationally intensive. Because the model takes into
account possible interactions among all actors between every observed event, model estimation
time increases geometrically in the size of the network and linearly in the number of events:
with n actors and m events, the computational complexity is at least on the order of O(mn2),
though computationally intense network statistics will increase this. The maximum likelihood
estimation procedure is also difficult to parallelize because each event relies on the state of the
network after the previous, and event statistic calculations potentially rely on the state of the
whole network. The procedure cannot be easily split by regions of the network or by events.
A network of about 100 actors and 10,000 events (such as the one we chose) takes about half an
hour to run on a modern single-core machine, and the algorithm becomes prohibitively slow at
perhaps 400–500 actors, using contemporary computing technology.

Because of these computational limitations on the ability to model event-based data, for this
case study, we randomly sampled a single group from the data set for analysis. The sampled
group contained 94 members connected by 16,706 private chat events. We generated two different
networks representing the group. The first was a time-stamped chat network consisting of group
members (the nodes) connected by private chats (the ties). This network was directed and each
tie was weighted by the total number of chats sent.

The second network was a friendship network consisting of the 94 group members (the nodes)
connected by 106 friendship relations (the ties). Because of the ambiguous nature of “friendship”
online (boyd, 2007), we limited analyses involving friendship to include only those friendships



COMMUNICATION IN AN ONLINE FRIENDSHIP NETWORK 235

that included trusting privileges in at least one direction (namely, the ability to access, take and/or
delete Second Life belongings). Prior research using this same data set has indicated that these
relationships share more of the network structural features associated with friendship in the offline
world than so-called “friendships” without trusting privileges, and may therefore be a better con-
ceptual proxy for friendship as we interpret the results (Burt, 2011). The friendship network was
undirected and fixed over the time period of the analysis, including only the friendships with
trusting privileges established prior to the first chat record.

Model Specification

To test the predictions outlined above, we used the specified chat and friendship networks and
included the following network statistics in our model. As described above, the model can include
a decay rate to model the importance of recent interaction. We used a half-life of 10 days for the
chat network, and no decay for the friendship network (see Model Selection discussion below for
details on how this half-life was selected). Because we measure directional communication, all
network statistics focus on a resident (ego) and the partner that ego may be chatting to (alter).
In the following, wij will indicate the weighted volume of past chats from resident i to partner j,
and fij will indicate the value of the event, set to 1 if there is a friendship between i and j, and
0 otherwise.

Inertia

Inertia records the number of times a given ego has chatted with a given alter in the past. If the
inertia hypothesis (H1) holds, we expect Inertia to be positive, indicating that past communication
increases the rate at which two residents will communicate in the future.

Inertia (i, j) = wij

Inertia Between Friends

Friend Inertia records the number of times ego has chatted with alter in the past, if ego
considers alter a friend. If the Friend Inertia hypothesis (H2) holds, we expect Friend Inertia
to be positive, indicating that past communication increases the rate at which two friends will
communicate in the future.

FriendInertia (i, j) = wij · fij

Reciprocity

Reciprocity records the number of times a given alter has chatted with a given ego in the past.
If the reciprocity hypothesis (H3) holds, we expect Reciprocity to be positive, indicating that ego
will communicate with alter more often if alter has communicated with ego in the past.

Reciprocity (i, j) = wji
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Reciprocity Between Friends

Friend Reciprocity records the number of times a given alter has chatted with a given ego in
the past, if ego considers alter a friend. In other words, this is an interaction term between reci-
procity and perceived friendship from ego to alter. If H4 holds, we expect Friend Reciprocity to
be positive, indicating that friendship will promote reciprocal communication above and beyond
what is seen between nonfriends.

FriendReciprocity (i, j) = wji · fij

Triadic Closure

Triadic Closure records the volume of communications that both ego and alter have shared
with any other resident in the network. Any resident that has communicated with both ego and
alter contributes to this measure. If the triadic closure hypothesis (H5) holds, we expect Triadic
Closure to be positive, indicating that the more both ego and alter have chatted with some other
resident, the more often will ego chat with alter.

TriadicClosure (i, j) =
√∑

k �=i,j
(wik + wki) · (

wkj + wjk
)

Triadic Closure Among Friends

Friend Closure records the total number of friends that ego and alter share in common, if ego
considers alter a friend. If H6 holds, we expect Friend Closure to be positive, indicating that if
ego and alter share a spot in many friendship triangles, ego will be more likely to communicate
with alter in the future.

FriendClosure (i, j) = fij ·
√∑

k �=i,j
(wik + wki) · (

wkj + wjk
)

Statistical Controls

We also include two controls to avoid biased measurements of the above statistics:
Ego Hub records the total volume of chats that ego participates in. This measures controls for

the uneven tendency to participate in chatting, and the possibility that certain people communicate
very frequently and/or broadcast information to the group.

EgoHub (i, j) =
∑

k �=i
wik + wki

Alter Hub records the total volume of chats that alter participates in. This measure controls
for the tendency of residents to seek information from or chat with popular alters.

AlterHub (i, j) =
∑

k �=j
wjk + wkj
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A constant term controls for the baseline level of communication within the network and
captures the extent to which communication is random or determined by the network structures
under analysis.

Model Selection

There has been little work on model selection and goodness of fit in relational event network
models. In lieu of a tailor-made model selection criterion, we use the Akaike information criterion
(AIC) (Burnham & Anderson, 2002) to select the optimal model specification. AIC penalizes the
log-likelihood of the estimated model by correcting for k, the number of statistics estimated, the
optimal model will minimize AIC.

AIC = 2k − 2 ln (L)

We used AIC to select both the statistics to estimate as well as the optimal half-life to use in
the weighted communication network.

Software

Relational event networks are still a recent entry to the modeling world. In fact, we know of only
one off-the-shelf product that can estimate such models: the relevent package for R (Butts, 2008).
The relevent package and its documentation are available for download on the Comprehensive
R Archive Network (CRAN, http://cran.us.r-project.org/). Although relevent can accept custom
networks and statistics, it does not handle weighted networks or estimate all of the statistics
we describe here. We developed our own solver for the relational event network model to pro-
duce the results described here. Our implementation does incorporate weighted networks. The
source code and documentation for our solver is available for download at: https://www.stanford.
edu/~vashevko/pages/renm/

RESULTS

Descriptive Results

The sampled group used for this analysis had 94 residents connected by 16,706 chats and
106 friendship ties. In an undirected network of 94 nodes, there are a total of 4,371 possible ties
((n∗(n-1))/2). Therefore, friendship ties represent 2.45% of all possible ties. Of the 16,706 total
chats, 3,300 chats (19.75%) were exchanged between friends, and the remaining 13,406 chats
(80.25%) were exchanged between nonfriends. This pattern confirms previous observations that
a disproportionate amount of chatting occurs between friends in the network.

https://www.stanford.edu/~vashevko/pages/renm/
https://www.stanford.edu/~vashevko/pages/renm/
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TABLE 2
Event-Based Network Analysis Results

Parameter Rate Estimate Rate Multiplier Standard Error

Inertia 0.00156188∗∗ 1.8974 0.000045
Reciprocity 0.00054796∗∗ 1.2520 0.000045
Friend Reciprocity 0.00083864∗∗ 1.4105 0.000175
Triadic Closure 0.00052699∗∗ 1.2412 0.000025
Friend Closure 0.00014497∗∗ 1.0613 0.000031
Controls
Ego Hub 0.00003133∗∗ 1.0129 0.000002
Alter Hub −0.00001989∗∗ 0.9919 0.000003
Friend Inertia −0.00136819∗∗ 0.5706 0.000169
Constant −4.470289 0.0114 0.010954

Note. 28 days of data preloaded, half-life = 10 days. “Rate Multiplier” assumes the underlying
statistic has mean level of 410.82. Constant “Rate Multiplier” is baseline rate of model.

∗indicates p < 0.05, ∗∗indicates p < 0.01

Relational Event Network Analysis Results

Results of the relational event network modeling appear in Table 2. Coefficients on each term
in the model can be understood as the logarithms of multipliers of a baseline rate of chatting.
The constant term in the model gives the baseline rate of chatting between any two individuals
in the network, and implies that two people chat at a rate of 0.01 messages per day (exp(-4.47)
= 0.0114). All other coefficients multiply this baseline rate as a function of the state of the
network. For example, if a sent a chat to b, the inertia coefficient implies that a has an 89.7%
greater than baseline chance of sending another chat, while the reciprocity coefficient suggests
that b has a 25.2% greater chance over baseline of replying. Because the data in this network
are weighted by number of characters in each chat, the column “Rate Multiplier” in Table 2
interprets all coefficients assuming that the corresponding statistic is at the mean chat length of
410.82 characters.

The first hypothesis proposed that past communication would predict future communication
within the network. This hypothesis was tested using the Inertia term in the model. The signifi-
cant, positive coefficient on the Inertia term indicates that past chatting positively predicts future
chatting within the network (89.7% more likely). The more an individual has chatted with some-
one in the past, the more likely he or she is to do so in the future. Therefore, the Inertia hypothesis
(H1) is supported.

The second hypothesis proposed that past communication would predict future communica-
tion among friends in the network. The significant, negative coefficient on the Friend Inertia term
indicates that the opposite may be true. Past communication is associated with a reduced like-
lihood of future communication among friends (42.9% less likely than baseline). Because the
terms in the model are interdependent, it is most appropriate to interpret the Friend Inertia term
in light of the general Inertia results for the whole network. Interpreted this way, we see that
being friends has a dampening effect on inertia, but there is still a small inertia effect over base-
line between friends (messages are 8.3% more likely than baseline when combined with Inertia).
That is, the more someone has communicated with a friend in the past, the more likely s/he is
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to do so in the future, although the effect is substantially smaller between friends than between
members of the network in general. Therefore, the Friend Inertia hypothesis (H2) is supported,
however the effect is not strong.

The next hypothesis predicted that chatting would tend to be reciprocal among pairs of resi-
dents in the network. The significant positive coefficient on the Reciprocity term suggests that this
is true, residents are 25.2% more likely than baseline to reciprocate chats over time. Therefore,
the Reciprocity hypothesis (H3) is supported.

The fourth hypothesis predicted that chat reciprocity would be stronger among pairs of friends
than among pairs of nonfriends. The significant positive coefficient on the Friend Reciprocity
term suggests that pairs of friends do tend to reciprocate chat over time. Accounting for the
general tendency towards reciprocity in the network, friends are an additional 41.1% more likely
to reciprocate messages. Therefore, the Friend Reciprocity hypothesis (H4) is supported.

The fifth hypothesis predicted a triadic closure effect within the network, where past commu-
nication with a common partner predicts future communication between previously unconnected
residents. The significant positive coefficient for Triadic Closure suggests that having a common
chat partner in the past predicts the emergence of a future chat tie – if a sent a chat to b who sent
a chat to c, a is 24.1% more likely than baseline to send a chat to c. That is, the third chat is more
likely, as a function of the first two. Therefore, the Triadic Closure hypothesis (H5) is supported.

The final hypothesis predicted that the triadic closure effect would be stronger among friends.
We predicted that if two residents have a common friend with whom they chat, they are very likely
to chat in the future. The significant positive result on Friend Closure supports this hypothesis,
although the effect size is somewhat small. Accounting for the general tendency towards triadic
closure in the network, triadic closure among friends is 6.1% more likely. Therefore, the Friend
Closure hypothesis (H6) is supported.

Significant effects on the two Hub control variables (Ego Hub and Alter Hub) suggest that
there are certain hubs in the network that broadcast information without otherwise engaging in
the chat patterns tested in the hypothesis tests. Including this variable in the model controls for the
effect of these hubs, and allows for a more accurate examination of the remaining hypothesized
patterns.

DISCUSSION

In this article, we advocate for the use of relational event network modeling for studying online
communication networks. Unlike other network analytic techniques that focus on static networks,
relational event network modeling allows researchers to model dynamic network processes.
Relational event network analysis leverages the detailed event data available for many online
communication networks and integrates both time-ordering and the conditional interdependence
of networked communication in order to test hypotheses about how communication processes
affect network structure over time.

We demonstrated one application of relational event network modeling using an online chat
network sampled from the virtual world Second Life. Our case study focused on unpacking
the processes that lead to a disproportionate amount of communication among friends online.
We discovered that inertia, reciprocity, and triadic closure all work in concert to generate more
communication among friends than nonfriends. Among these, the strongest effect was reciprocity.
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This suggests that increased communication among friends does not stem from people starting
more conversations with friends than nonfriends (indeed, we observed a dampening effect on
inertia among friends over time). Instead, the overall volume of communication increases because
friends are more likely than nonfriends to reciprocate messages, leading conversations to emerge
and resulting in more overall communication between friends than between nonfriends.

This finding reinforces the relational value of reciprocal communication among friends noted
elsewhere in the CMC literature (Gilbert & Karahalios, 2009; Peter, Valkenburg, & Schouten,
2005). It also begins to paint a picture of the communication processes associated with the emer-
gence of friendship online. Before friendship is established, communication tends to be rather
one-sided. People send many messages out, occasionally reciprocating or closing triads, but more
often sending repeat messages to the same person, perhaps in the hopes of eliciting a response.
When friendship exists, conversations are the norm; people tend not to follow up with unrespon-
sive friends, instead focusing communication on responsive partners, or less often, in responsive
groups. Although we currently have only between-subjects evidence of these different patterns,
future studies using relational event network analysis to examine the evolution of communication
networks as friendships emerge could lend further evidence to this claim.

Although preliminary, these time-conditioned insights represent important advances in under-
standing the processes that generate online communication networks. Historically, CMC research
has focused on stable network structures and used inferential statistics to explain how those
network structures may have emerged. In contrast, relational event network modeling directly
observes the processes that generate stable network structures, and distinguishes between the rel-
ative impact of different processes that lead to the to the same overall network structures. Doing
so allows researchers to move beyond discussing how CMC networks are, and instead focus on
how they came to be.

This opens up a wealth of new research opportunities for CMC researchers. For example,
rather than observing that there are certain influential nodes in a CMC network, relational event
network analysis allows us to determine how those nodes became influential. Instead of noting
that there are clusters in a network, relational event network analysis allows us to determine why
they formed. As demonstrated in this paper, rather than identifying different levels of communica-
tion between different types of users, relational event network analysis also allows us to identify
the patterns that generated these differences.

Naturally, as with any exploratory research, the results of our case study should be interpreted
with caution. Second Life, although suitable for this methodological demonstration, is one virtual
world with a relatively unique culture and set of norms around communication. Generalization
of the communication patterns observed in this case study to other online communities and/or
offline interactions would not be appropriate. Further, the present analysis is necessarily limited
by the type of data we had about Second Life. Notably, while we can draw conclusions about how
patterns of communication evolve within the network, without records of content exchanged, we
do not offer insight into how specific communication messages, topics, themes, etc. influence
network evolution.

Nevertheless, we hope that computer-mediated communication researchers can leverage the
examples provided here to more precisely and accurately deal with the wealth of information
available about online communication. In the future, we plan to analyze additional network sam-
ples using the same techniques, and to further investigate the interdependence of chatting and
friendship. Specifically, we plan to examine how chat patterns vary before and after the emergence
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of friendship ties to further clarify the preliminary results noted above. These and other relational
event network analyses offer great potential to yield insights about online communication patterns
never before accessible using alternate network analytic or sociometric techniques.
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