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108 Psychology and Human Performance in Space Programs

INTRODUCTION

Over the centuries, humankind has taken on many challenging explorations that 
require collaboration because their very survival relied on it. Humanity has been 
collectively exploring beginning with the agrarian and nomadic ages, followed by 
maritime explorations climaxing with the discovery of the ‘new world,’ scaling the 
peaks of our tallest mountains, diving to the deepest trenches of our oceans and 
standing-up bold polar expeditions. Finding individuals to engage in these  daredevil 
adventures is not for the faint of heart – and spirit. An observation that Sir Ernest 
Henry Shackleton, a British Antarctic explorer who led three expeditions to the 
Antarctic, was acutely aware. Some sources recount that when Sir Shackleton tried 
to recruit a crew for one of his Antarctic expeditions, his classified ad in the newspa-
per reportedly read: ‘Men wanted for Hazardous Journey. Small wages, bitter cold, 
long months of complete darkness, constant danger, safe return doubtful. Honor and 
recognition in case of success’ (Huntford, 2013). This ad was not intended to appeal 
to the legendary glamorous swashbuckling sailors immortalized in fiction. Indeed, in 
a study of 25 personnel who spent the 9-month austral winter confined to two small, 
isolated research stations on the Antarctic ice cap, Biersner and Hogan (1984) found 
that the most positive peer nominations were received by those who scored low on 
self-reflection and emotional expressiveness. Relatedly, based on several studies of 
human responses to life at the US Amundsen-Scott South Pole station, Natani and 
Shurley (1974, p. 90) concluded that the Antarctic station had become ‘a haven for 
the technically competent individual who is deficient in social skills.’

It is within this much longer-term context that we must consider humanity’s 
 20th-century foray into space. It is but the latest ‘giant leap’ that is building on an 
arguably equally significant arc of achievements by our ancestors. Having explored 
and exploited most of the frontiers on Earth, space travel puts us on the brink of 
 making humans an interplanetary species. The public’s interest in the rugged 
 individualistic qualities that epitomized the very first astronauts in space – the Right 
Stuff – was captured in Tom Wolfe’s 1979 eponymous book. Tom Wolfe focused 
on the qualities of the Mercury Seven – Scott Carpenter, Gordon Cooper, John 
Glenn, Gus Grissom, Wally Schirra, Alan Shepard, and Deke Slayton – who were 
all part of the first (and last) solo Mercury missions into space. As we progressed 
through subsequent space programs – Gemini, Apollo, Skylab, Space Shuttle, and 
the International Space Station (ISS) – ‘The Right Stuff’ for astronauts demanded 
being a team player – an insight immortalized in the phrase ‘teamwork makes the 
dream work’ in the opening sentence of the Acknowledgment to the 2017 memoir 
Endurance by Astronaut Scott Kelly (2017), a veteran of the International Space 
Station who has spent more than 520 days in space.

NASA and its international partners now acknowledge that crew members 
must not only be technically competent, but also effectively navigate interpersonal 
 interactions in space. Crews have moved beyond the technically competent but 
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socially deficient crews of the Antarctic. A diary entry (Stuster, 2016, p. 78) by a 
member of the ISS extolled the virtues of the then ISS commander:

X is a master of good natured fun. I think when he leaves we will see a shift in the 
enjoyment of the people working the ground jobs. He is brilliant at knowing the perfect 
balance of fun with professionalism. I am in awe constantly. My love of joking around 
is immense but I am a mere child next to the talents of my commander. He is gifted.

But space travel is on the cusp of getting even more challenging. We are  progressing 
from long-duration space exploration on the ISS (250 miles from earth), to 
 long-distance space exploration (LDSE) returning to the moon (250,000 miles 
away) and then on to Mars (250 million miles away). The acronym LDSE has been 
used at various times to describe long-duration space exploration, long-distance 
space  exploration, and by the Chinese National Space Administration as Lunar and 
Deep Space Exploration. We use LDSE here to refer to long-distance space explora-
tion, since the challenges they present – and we seek to model – are beyond just a 
 long-duration mission. It requires the crew to work with much greater autonomy. 
The days are numbered when we could quip that astronauts are the ‘eyes and ears’ 
but mission control on Earth remains the ‘brains’ of any mission. The fact that a 
radio signal can take up to 22 minutes one-way to travel from the Earth to Mars, 
significantly diminishes the likelihood of a successful resolution in response to a 
‘Houston, we have a problem’ call by a Martian crew member. The first words 
uttered by Capsule Communicator at Mission Control, Charlie Duke, following 
Armstrong’s confirmation of the down-to-the-wire Apollo 11 landing of the Eagle 
on the moon was to tell the crew ‘You got a bunch of guys [at mission control] 
about to turn blue.’ Mission control will not have the luxury to ‘turn blue’ during a 
Mars landing. The crew will have to coordinate seamlessly on the complex task of 
landing with unparalleled levels of autonomy from mission control. Future LDSE 
missions will challenge the frontiers of human collaboration. Crews (representing 
diverse nations and cultures) are expected to live and work in isolated and confined 
spaces for up to 30 months, requiring a level of interpersonal compatibility that 
keeps conflicts between team members manageable and allows team members to 
rely on one another for support.

While we ponder the substantial unknowns on how to compose dream teams for 
LDSE, we must leverage what we already know from prior research. We know from 
prevailing team effectiveness models that teams are best positioned for success when 
certain enabling conditions are in place (Hackman, 1987, 2012; Mathieu, Maynard, 
Rapp, & Gilson, 2008; Wageman, Hackman, & Lehman, 2005). Research on team 
composition, the configuration of attributes among team members, allows us to study 
the effects of who is selected for a space exploration crew on the future  experiences 
and outcomes of that crew. Team composition models will consider the impact of 
crew member attributes (e.g. personality, relationships, demographics), but in this 
context are not just about selecting people for a crew and then washing your hands of 
the model. Team composition can also consider fluctuation in crew  dynamics as they 
change through the mission as a consequence of crew member attributes.

Team composition is a key enabling structure for teamwork (Bell, 2007). In 
fact, the composition of the space crew will perhaps be the largest leverage point 
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for mitigating team risk. A vast body of research supports the importance of team 
composition (Bell, 2007; Mathieu, Tannenbaum, Donsbach, & Alliger, 2014). 
Team composition is empirically linked to outcomes such as cooperation (Eby & 
Dobbins, 1997), social integration (Harrison, Price, Gavin, & Florey, 2002), shared 
cognition (Fisher, Bell, Dierdorff, & Belohlav, 2012), information sharing (Randall, 
Resick,  & DeChurch, 2011), adaptability (LePine, 2005), and team performance 
(e.g., Bell, 2007).

While it is widely acknowledged that team composition is a critical design 
 feature for effective teams, much of what is known about effective team composition 
is from research within the confines of conventional workplaces (e.g.,  production 
plants). Less is known about how composition affects teams that operate in extreme 
 environments such as those experienced by crews of future space exploration mis-
sions. But here we can draw upon insights gathered from teams that share some of 
the isolated, confined, and extreme (ICE) environments that will confront LDSE. 
Although they are not exactly comparable, we have learned from contexts such 
as polar stations, offshore drilling rigs, weather stations, nuclear submarines, and 
remote construction sites.

While these field and case studies offer important general insights, the extreme 
environment within which LDSE crews will operate requires carefully designed 
experiments to study the impact of salient task, social, and physical contextual cues 
(e.g., isolation, confinement, sleep deprivation) on team functioning. Analog envi-
ronments such as the Human Exploration Research Analog (HERA) at NASA’s 
Johnson Space Center in Houston, TX and the NEK facility at the Institute for 
Biomedical Problems in Moscow, Russia are designed to serve as isolated, confined, 
albeit controlled (ICC) – rather than extreme – environments to mimic some of the 
realities confronting future space exploration. A number of LDSE-analog studies 
have examined team composition factors in the LDSE-environment (see Bell et al., 
2015 for a review). These studies implicate a number of team  composition variables 
such as gender, national, professional and military background, values,  personality, 
and specific abilities as factors tied to the social integration (e.g.,  subgrouping, 
 isolation), team processes (e.g., conflict), and emergent states (e.g., shared team 
mental models) that can affect LDSE mission success. However, many of these 
studies were correlational, descriptive, and based on small team-level sample sizes. 
Further they only implicitly recognized that the impact of team composition on 
functioning was mediated by social network ties (such as advice, affect, hindrance, 
leadership) among crew members. Thus, although team composition is likely to 
play a critical role in crew social integration, processes, and emergent states for 
future LDSE crews, the critical team composition factors and the particular pat-
terns of emergent network ties and subsequent outcomes associated with different 
compositions remain elusive.

The purpose of our chapter is to outline a novel application of computational 
modeling – and more specifically agent-based modeling – to describe, predict, 
and prescribe the impact of team composition on team functioning. We report on 
our use of agent-based modeling to facilitate the study and improvement of crews 
simulating LDSE as part of a NASA-funded project titled Crew Recommender 
for Effective Work in Space (CREWS). Specifically, in the next section, we begin 
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by discussing what motivates modeling of social systems and agent-based models 
(ABMs) of space teams. We trace the use of models in the hard sciences and delin-
eate its use in the social sciences. In subsequent sections, we describe the steps in 
developing an ABM. We begin by specifying the factors (variables) that influence 
the construction of an ABM to explore the impact of team composition on crew 
functioning. Next, we describe how we calibrate these models using empirical data. 
This requires substantial efforts to instrument the contexts in order to capture all 
the data needed to calibrate these models. We describe a fairly novel approach to 
use the data to estimate parameters indexing the effect of various factors in the 
ABM. Having calibrated an ABM model, we next discuss how to validate the effi-
cacy of the model’s predictions. Once validated we demonstrate how these models 
can be utilized. Finally, we envision how the science described here will translate 
into action via implementation of a dashboard (or, more accurately, a do-board) to 
assist decision makers at space agencies such as NASA to anticipate functioning 
of hypothetical crew configurations prior to a mission, as well as predict – and 
 mitigate – crew functioning post-launch.

COMPUTATIONAL MODELING AND SPACE TEAMS

We begin this section with a brief overview of what we mean by models, and how we 
use them to aid in composing space teams. A model is a formal representation of a 
system, real or hypothetical. A simple example of a model would be any mathemati-
cal function intended to describe reality, such as a formula from physics describ-
ing how a projectile dropped with a certain velocity will change its velocity as it 
approaches the earth. This model was constructed by physicists in order to detail 
how existing factors (e.g. the gravity of the earth) and existing theories (e.g. Newton’s 
equations of motion) come together to produce some outcome (e.g. the future speed 
of the projectile). A model is a way, in very precise language, to describe the process 
through which some input (the original speed with which the object was dropped) 
becomes translated to some output (current velocity of the projectile), as a function 
of some other parameters (e.g. acceleration due to gravity and time elapsed).

Cast in this light, the concept of a model is actually quite broad. A model is any 
sort of precise, reproducible simplification of reality. Methods such as regression, 
or a hypothesis being tested in a factorial experimental design, are models, albeit 
simple ones. There are various ways in which a physicist or an engineer may try to 
leverage a model. First and foremost, in creating a model, a researcher is required 
to be precise. They are required to derive an exact, mathematical specification 
of how they believe each of the variables interacts. As a result, their model is a 
precise encapsulation of their beliefs that can then be tested, or easily shared with 
others.

Physicists and engineers rarely stop at simply creating a model. Models are meant 
to be applied in various ways to explore implications for the phenomenon being 
modeled. There are three main types of analytics carried out with a model: descrip-
tive analytics, predictive analytics, and prescriptive analytics (Delen & Demirkan, 
2013). Descriptively, a model can provide a lens to describe, understand and/or 
explain what is observed. In the example, scientists examine how projectiles behave 
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according to the model and begin to test the model using experiments. They estimate 
realistic values for the parameters, such as the effect of gravity, in order that their 
model will describe what they observe in real-world experiments. In addition, scien-
tists often leverage the model predictively, guessing the future speeds of a hypothet-
ical projectile (even if it was dropped at an initial velocity not previously observed 
empirically). They speculate on interesting scenarios to test experimentally in the 
future, and later conduct these experiments to validate whether their model was cor-
rect, or how they might revise their model accordingly.

Forecasting is often a valuable end goal of predictive analytics. Consider the 
case of weather forecasting. However, in many instances, prediction while being 
a necessary step is not sufficient. While in most instances we tend to grudgingly 
accept a weather forecast, there are instances where we might want to do something 
to change  it. Consider the case of high profile sporting events such as the Winter 
Olympics where airplanes are sent to ‘cloudseed’ a noncompliant weather system 
to trigger an artificially created ‘prescribed’ snowfall over the ski routes. Clearly 
the rarity of this event suggests that weather forecasting doesn’t routinely lead to 
prescriptive analytics. However, in many other areas, once scientists are reasonably 
comfortable with the performance of their model, they begin to leverage it pre-
scriptively in order to make decisions or generate recommendations: how should 
the inputs (timing or initial velocity) of a projectile be changed in order to obtain 
a desired outcome (final velocity)? All of these uses – learning about the world, 
predicting the future, and making the best decision – are jointly tied back to one 
integrated model that researchers develop.

While these approaches have long been leveraged to understand and enable the 
physical world, there have been repeated calls to apply these to social systems (see, 
for example, Pentland, 2014). However, two major hurdles need to be overcome along 
the way. First, unlike most physical systems, social science theory has often not been 
able to unequivocally identify or decompose the key factors that influence the func-
tioning and outcomes of social phenomena. In the social sciences we do not have – 
nor are we close to having – the equivalent of an equation that says, given the speed 
with which a projectile is dropped, the time elapsed and the universal gravitational 
force of earth, one can instantly predict with high precision the speed of the projec-
tile at any future point in time. Further the distinction between inputs and outputs are 
often muddied within social systems where they may be interrelated and influencing 
one another. Our beliefs can influence who we choose to interact with – and who 
we choose to interact with can influence our beliefs. In modeling parlance, it is very 
unlikely that rich and complex social phenomena can be adequately modeled using 
equations that have elegant ‘closed form analytical’ solutions. Hence the example 
model from physics we discussed entailed only a deterministic, mathematical calcu-
lation, which is largely irrelevant to the social science. When we build models about 
social processes, it is only natural to incorporate stochastic processes and chance 
occurrences into our models. After all, not all humans think or interact in the same 
way each time, and not all influences upon a social process can be perfectly captured 
by a single model. (See Macy & Tsvetkova, 2015 for an elaboration on the impor-
tance of randomness in social science models). In many such cases where we don’t 
really ‘know’ the model, we need to rely on messier simulation techniques where 
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we have to ‘grow’ the model. That is, use simulations to model what happens in the 
system one time step at a time to discover the emergent states of the system at subse-
quent time points. The second hurdle to building predictive and prescriptive models 
for social science phenomena is closely related to – and indeed an extension of – the 
first. Even if we were to know the factors that shape a social phenomenon, unlike in 
the hard sciences, we typically do not have solid evidence about the relative impor-
tance of each of these factors. In modeling parlance, we do not know the values of 
the parameters that provide a quantitative metric by which each factor influences a 
social outcome. The gravitational constant for acceleration is an example of such a 
parameter well established in the hard sciences.

We argue that overcoming these hurdles is doable and effective when focused on 
the effects of composition on space teams. It is able to help us answer questions such 
as what social networks emerge among crew members? How do crew relationships 
evolve and change over time? How does one anticipate potential problems that the 
crew is likely to encounter and what strategies can we prescribe to preempt or miti-
gate against those problem predictions? Given a pool of potential crew members and 
role constraints that need to be met, how does one evaluate and rank order the merits 
of top crew configurations on different dimensions of crew functioning or ability to 
manage conflict when it occurs? Our preliminary efforts at building and validating 
these agent-based models of teamwork during simulated space missions to answer 
the aforementioned questions have been promising. This leads us to believe that 
further advances with these agent-based models are poised to inform NASA’s crew 
composition questions as it prepares for the Artemis mission that will take the first 
woman and the next man to the moon in the near future, build the Lunar Gateway, 
and prepare for a mission to Mars.

This section has outlined the merits of employing models to describe, predict, 
and prescribe social phenomena. Unlike in the hard sciences, we recognized the 
limitations for us to ‘know’ closed-form analytic models to characterize rich social 
 phenomena. Instead we argued for an effort to ‘grow’ computational models that 
simulate future states by traversing through time one step at a time. We noted that 
 utilizing these models effectively requires us to overcome two major hurdles – 
 identifying key factors (variables) that influence the social phenomena of interest and 
estimating the magnitudes of those influences (parameters). Past efforts to overcome 
these hurdles have relied on expert opinions rather than empirical estimation. But 
these have limits in situations where experts have divergent opinions on the factors 
and the magnitude of their impacts. In the next section we delve deeper into how 
ABMs can help describe, predict, and prescribe interventions for LDSE. We also 
outline the steps to build, calibrate, validate, and make these agent-based models 
actionable.

MOTIVATING ABMS FOR SPACE TEAM COMPOSITION

To start developing models of large and complex social systems, we first character-
ize entities within the system as agents. In our case the agents are crew members. 
The model is a set of probabilistic rules (or equations), which specifies how each 
agent will update their attitudes (about themselves and other agents) and engage in 
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behaviors (actions and interactions with others). These models often result over time 
in complex emergent patterns that are not easy for the human mind to intuit although 
they are entirely derived from probabilistic rules specified by humans. Agent-based 
modeling (ABM) is a perspective on modeling that embraces these ideas to tackle 
complex problems and understand emergent states.

For those studying teams, ABMs offer an opportunity to examine dynamic team 
processes. Traditionally, team functions have been studied using Input–Process–
Output (IPO) models that focus on how simple main effects result in some sort 
of outcome in teams. However, there have been increasing calls to move to more 
nuanced models that incorporate the complex interactions of multiple factors, incor-
porate emergent states that may form in a team, and incorporate temporal changes 
in team processes (Grand et al., 2016; Ilgen, Hollenbeck, Johnson, & Jundt 2005; 
McGrath, Arrow, & Berdahl, 2000). ABMs offer a promising way to bridge this gap. 
Traditional modeling approaches (regression, factorial design, structural equation 
models) require researchers to make certain assumptions and test hypotheses that 
follow a certain structural form. In contrast, agent-based models empower research-
ers to develop structural patterns of potentially mutual and/or nonlinear influences 
based on their assumptions. It empowers team researchers to build a more flexible 
model of the world as they see it.

In the context of space, we have an outstanding opportunity to build a descriptive 
understanding about how various factors (attributes of team members, scheduling of 
tasks, sleep deprivation, communication delay, lifestyle during LDSE) systemically 
influence the ability of a crew to collaborate with one another and perform effec-
tively. ABMs of team composition provide a mechanism for researchers to integrate 
multiple existing theories about team composition, calibrate them with empirical 
data, and explore the implication of these results.

ABMs are especially well-suited for research in areas, such as LDSE  analogs, 
where we are only able to study a limited number of crews but can collect 
 voluminous amount of data about each of these individual crews, their network 
relations with one another and how they perform over time. These types of data 
have traditionally been more amenable for a qualitative, case-driven research 
approach than quantitative work. Inferential methods often assume a sufficiently 
large and independently distributed sample that is challenging to gather in LDSE 
analogs. Furthermore, inferential methods only work toward making ‘in sample’ 
claims: data from a 45-day analog mission only describes what to expect from the 
first 45 days of an LDSE analog, with no strong mechanism to speculate about 
future trends occurring beyond these 45 days. ABMs address these limitations: 
They provide an opportunity to build models that can be validated based on high-
resolution temporal data collected in other LDSE analogs and projected over 
 longer time spans.

Once a model of how different factors influence crew outcomes in LDSE is con-
structed, calibrated, and validated, it is now ready to be employed predictively. 
For instance, ABMs allow researchers to conduct in silico virtual experiments, in 
which hypothetical inputs (not previously observed in the real-world) are provided 
to an ABM to predict what outputs the model will produce. A model that is fed data 
about crew members’ characteristics and their upcoming task schedules can predict 
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potential risks (e.g., interpersonal conflict, high workload) that members of the crew 
may encounter, paving the way for mission support to plan future countermeasures 
aimed at mitigating these risks.

Finally, ABMs have prescriptive uses that can help mission support to plan those 
future countermeasures aimed at mitigating those aforementioned risks. Prescriptive 
analytics will evaluate the efficacy of these options. Relatedly, given the state of the 
crew, ABMs can recommend (or prescribe) how tasks can be scheduled, based on 
workload, sleep deprivation, or other factors, in a way that will help astronaut crews 
operate at their optimal performance. As such ABMs will be a potentially valuable 
tool to help researchers offer operational assistance to shape the effectiveness of 
team processes in LDSE.

DEVELOPING AN AGENT-BASED MODEL 
FOR CREW COMPOSITION EFFECTS

The development of an agent-based model is a complicated and iterative process, 
in which researchers apply many different techniques to create, improve, and learn 
from their model. We outline steps we used to develop an agent-based model of team 
composition by describing four key processes we carried out: model construction, 
model calibration, model validation, and model application (Figure 6.1). While 
we apply this approach to team composition, it can be applied to other dynamic phe-
nomenon in LDSE analog research.

In model construction, we specify the system of interdependent variables of 
interest that capture the social phenomena we want to explain. We relied on theory, 
prior empirical research, and meta-analyses in order to select variables to include 
in our model and to specify potential mechanisms by which these variables may 
influence one another. The model calibration stage is where the empirical data col-
lected in analogs are used to estimate the parameters of the model. In the model 
validation stage we evaluate the extent to which the model is valid in terms of fit-
ting the observed data on which it was trained as well as on new test data. Finally in 
the model application stage, we conduct virtual experiments to predict what might 
 happen in a hypothetical team as well as evaluate various prescriptive actions to 
mitigate potential problems that are predicted. We hasten to add that there is no 
single ‘correct’ approach to developing an agent-based model. Despite its linear 

FIGURE 6.1 Flowchart for the steps that may be used in developing an emulative ABM.
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representation, in practice, model development is an iterative process of refinement 
and extension – moving through each process multiple times and adapting plans for 
the next step based on what happened in the previous ones.

Model ConstruCtion

Defining Model Scope
The first step in constructing an agent-based model is to describe the models’ 
scope: Who are the agents, what are the output metrics of the model that we seek to 
explain (e.g. team functioning, performance, viability) and what factors  influence, 
and are perhaps in turn influenced by, these output metrics? These questions form 
the foundation of what the model will try to accomplish, and how it will go about 
doing it.

Until recently, because of the paucity of dynamic empirical data, ABMs were 
more heavily utilized to develop simple, stylized models of social phenomena and 
were used primarily to explore how changes in inputs or mechanisms might impact 
emergent outcomes. For instance, a simple stylized model where new agents enter-
ing a network were more likely to connect with already well-connected nodes dem-
onstrated the plausibility of preferential attachment as a theoretical mechanism to 
explain the widespread prevalence of scale-free ‘hub-and-spoke’ social networks 
(Wilensky, 2005). Models designed to puzzle through such thought experiments 
are often referred to as intellective computational models (Mavor & Pew, 1998). 
The parameters in these computational models are often arbitrarily chosen with 
little loss of generalizability. However, with the increasing availability of high-
resolution temporal data, there is greater interest in the development of emulative 
computational models (Carley & Hirshman, 2011). These much larger models seek 
to emulate in substantial detail the dynamic features and empirical characteristics 
of a specific team or organization (Carley, 2009). They often have, by compari-
son, a much larger number of inputs and outputs; however, the availability of large 
amounts of dynamic empirical data eliminate the need for modelers to a priori 
specify parameters for the impact of these variables on the phenomena of concern. 
Instead we use novel genetic algorithms and optimization techniques to empirically 
estimate these parameters (Stonedahl & Wilensky, 2010a; Sullivan, Lungeanu, 
DeChurch, & Contractor, 2015; Thiele, Kurth, & Grimm, 2014). Using empirical 
data to estimate the parameters in a computational model is a novel contribution 
to ABM research. The idea is somewhat analogous to a statistical (e.g., regression) 
model, in which empirical data is employed to identify whether, and to what extent, 
variables influence one another. Using empirical data to estimate parameters in 
ABM have the potential to blunt criticism that modelers face from theorists or 
empiricists who are wary of believing insights drawn from computational models 
which include, arguably, arbitrarily specified parameters – rather than parameters 
supported by empirical data.

Having decided on the agents, the decision to design (in our case) an emulative 
(rather than intellective) model, and high-level categories of inputs and outputs, the 
next step is to develop the agent-based model.
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Theory, Prior Empirical Research, and Meta-Analysis
In the first step, we used theory, prior empirical research, and meta-analyses for two 
purposes: (i) to identify a system of variables that are interrelated with the phenom-
ena of interest, and (ii) create probabilistic rules that specify how agents’ attitudes 
and behaviors shape, and are shaped by, the system of variables. In our case the 
outcomes of interest are crew performance and viability. However, a central, argu-
ably idiosyncratic, premise of our modeling effort is that the impact of compositional 
factors on crew performance and viability is completely mediated by crew members’ 
network relations (Figure 6.2).

Indeed, a wide-body of extant literature (Balkundi & Harrison, 2006; Crawford & 
LePine, 2013; Mehra et al., 2006) have established significant connections between 
social relations and measures of team performance We identified four social rela-
tions that were relevant to analog research – task affect, task hindrance, leadership, 
and followership. In addition, our research on HERA crews has shown that proper-
ties of the task affect, task hindrance, leadership, and followership networks were 
all correlated with objective measures of performance on team tasks (Antone et al., 
2019).

Given our premise that social relationships mediate the effects of team 
 composition on crew performance and viability, the remainder of the model is 
focused on  compositional, network, and environmental factors that influence social 
relationships among crew members. Figure 6.2 provides a schematic of the factors 
in our ABM influencing social relationships among crew members. This model was 
based on a review of the theoretical and empirical literature on team composition, a 
smaller subset of case studies that looked at teams in isolated and confined environ-
ments and meta-analyses on team composition.

An integrAted Model of teAM CoMposition

The factors shaping social relationships among crew members fall into five buckets: 
First, we consider the endogenous effects labelled ‘Social Network Trends’ in Figure 
6.3. These include temporal patterns such as inertia – the likelihood of a crew mem-
ber enjoying working with another in the future is often best predicted by the extent 

FIGURE 6.2 Core networks predicting key outcomes of performance and viability.
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to which the crew members currently enjoy working with one another. Another 
 common endogenous mechanism is based on reciprocity. If a crew member enjoys 
working with another, it is likely that the other will also report enjoying working 
with the former. Likewise, crew relation may be transitive, if A looks to B for leader-
ship and B looks to C for leadership, A might also look to C for leadership. Finally, 
crew relations might exhibit the emergence of hubs. One crew member might draw 
hindrance ties from all other members.

The two buckets on the right consider the compositional effects of individu-
als’ personality on crew relations. The bucket labelled ‘Personality’ considers the 
extent to which a crew member’s personality characteristics (Five Factor Model 
personality traits and facets, values, coping styles, psychological collectivism, and 
self-monitoring) make them more (or less) likely to report (or receive) specific 
social ties from other crew members. The bucket labelled ‘Personality Fit’ con-
siders the extent to which the match (or mismatch) in personality characteristics 
between two crew members might increase or decrease the likelihood of a social 
relation between them.

The two buckets on the left side of Figure 6.3 consider environmental factors that 
influence crew social relations. The bucket labelled ‘ICC’ refers to the impact of con-
textual factors (Isolation, Confinement, and Controlled conditions) on crew social 
relationships. Finally, the bucket on the bottom left labeled ‘Tasks and Scheduling’ 
considers how aspects of the tasks impact crew relations. Specifically, we modeled 
the extent to which crew relations were influenced by the workload, interdependence, 
situational strength, and duration of each task the crew carried out.

FIGURE 6.3 Factors integrated into our ABM of Teamwork in LDSE.
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Each of these potential influences were codified as a system of probabilistically 
driven rules that would update crew relations at each time point based on prior time 
points for the entire duration of the 30- or 45-day missions. Simplifying assump-
tions are made about the level of change during sleep periods. Time invariant factors 
such as personality and personality fit would have a baseline effect across all time 
periods while time variant factors such as days in isolation, variations in tasks and 
scheduling, and fluctuations in the social relations themselves had a more dynamic 
impact on future states of social relations. These systems of equations were then 
implemented in Netlogo (Wilensky, 1999), a widely used ABM platform. The ABM 
model was now ready to be calibrated as described in the following section.

Model CAlibrAtion

A distinctive feature of our deployment of ABM is to rely entirely on empirical 
data to estimate the magnitude with which each factor in our agent-based model 
influenced crew relations. This is in stark contrast with most prior ABM efforts (see 
Sullivan et al., 2015 for an exception) where the researcher uses some heuristic (a lit-
erature review of effect sizes or expert opinion) to specify the magnitude with which 
various factors impacted outcomes. As Smith and Rand (2017) argued, using data 
generated from real experiments is the ideal method to design and calibrate agent-
based model’s rules and the mechanisms.

Collecting high-resolution data for the study of long-duration space exploration 
is a major challenge. While it is not possible to intensely survey and monitor actual 
crews in space, we relied on data gathered in NASA’s Human Exploration Research 
Analog (HERA) at Johnson Space Center. HERA simulates long-duration space 
missions with a crew of four ranging for a period of 30–45 days. HERA places crews 
of individuals in conditions that simulate space exploration: completing simulated 
tasks, living in a small module for extended periods, experiencing communication 
delays with mission control as they ‘travel’ away from earth, as well as designated 
periods of extended sleep deprivation. Data collected in isolated and confined envi-
ronments such as HERA is arguably the closest alternative for studying crews to 
actual space missions.

That said, these long-duration space exploration analogs are also expensive 
and time-consuming to operate. Researchers are only afforded the opportunity to 
observe a handful of missions every year. The upside is that for the crews that are 
observed, we can observe many variables over time. For our model calibration, we 
obtained data from eight separate four-person crews completing 30–45 day missions 
in the HERA analog operated by NASA.

To have our model estimate parameters based on what occurs in these HERA 
crews, we must collect data on all variables identified in Figure 6.2. Time invari-
ant personality and personality fit variables only needed to be collected once using 
standard psychometric scales. Time variant variables needed to be measured at sev-
eral points in time. The latter included social networks elicited from the crew via 
sociometric surveys at eight points in time over the course of a 30-day mission or 12 
points in time over the course of a 45-day mission. In addition, we were able to col-
lect data using pre-mission and post-mission surveys.
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As dependent variables in our model, we included measures of four relational 
 networks: task affect, task hindrance, leadership, and followership. These four 
 networks capture a long-standing distinction in the small group literature on task 
and social needs. The task affect and hindrance capture positive and negative work-
ing relationships among crew members. Task affect was measured with the prompt: 
‘With whom do you enjoy working?’ Task hindrance was elicited with the prompt: 
‘Who makes tasks difficult to complete?’ In addition to assessing manifest social rela-
tions, we also included two networks capturing behavioral and motivational aspects 
of teams: leadership and followership. Leadership was elicited by asking ‘To whom 
do you provide leadership?’ Followership relations were assessed by asking: ‘Who 
do you rely on for leadership?’ These four prompts yield four directed networks, each 
examined in relation to performance. We also coded task characteristics based on 
crew members’ perceptions of workload and we were also provided detailed minute-
by-minute task schedules (nicknamed the ‘playbook’) for individuals working by 
themselves or in teams over the course of the entire mission. Finally, we were able to 
design our own tasks carried out by the HERA crews to gauge multiple measures of 
team performance across task types (Larson et al., 2019; Antone et al., 2020).

To estimate the parameters of the ABM model, we used genetic search algorithms 
implemented in the BehaviorSearch tool for NetLogo (Stonedahl & Wilsensky, 
2010c). The BehaviorSearch tool allows for the specification of an objective func-
tion that is minimized or maximized according to some set of constraints to ‘cali-
brate’ the model. Calibration simply describes the process of manipulating a model 
to get closer to a desired behavior (Calvez, & Hutzler, 2005; Stonedahl & Wilensky, 
2010b). In this case, the desired behavior is matching as closely as possible the 
simulated social relations among crew members with the empirical observed social 
relations among crew members. The objective function we chose was the mean 
squared error between simulated crew relations and empirical crew relations. The 
BehaviorSearch software implements several search algorithms, which can be used 
to find a set of parameters that minimizes the mean SSE. To find the parameters 
for this model, each of the different search algorithms were tested. In our case, 
the standard genetic algorithm yielded the best results. Our results indicated, for 
instance, that crew members tend to enjoy working with individuals who are high 
on self-monitoring. Further, these individuals are less likely to be viewed as making 
tasks difficult to complete. Further, high workload schedules make crew members 
less likely to enjoy working with others. Turning to leadership relationships, our 
model estimates indicate that two crew members are not likely to claim leadership 
over one another. However, when crew members rely on one another for leadership, 
it is likely to be reciprocated.

Unlike traditional statistical inferential techniques, estimates obtained from 
BehaviorSearch algorithms are not accompanied with standard errors and hence are 
not amenable to standard significance tests. However, to assess the robustness of the 
parameters estimated for, say, parameter P, we run the model fixing all the other 
parameters to the values estimated by BehaviorSearch, while letting the parameter P 
vary over its range (from −1 to 1) using enough replications to compute the mean fit 
error. For example, to test the significance of the finding that crewmembers tend to 
enjoy working with individuals who are high on self-monitoring, we ran the model 
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500 times using the parameters determined by BehaviorSearch (e.g., self-monitoring 
parameter for the recipient of task enjoyment relations was 0.56). Then, we ran the 
model 500 times with all the same parameters except the self-monitoring parameter 
that could vary over its range (from −1 to 1). Finally, a one sample t-test was per-
formed to determine whether the set of errors estimated with the fit parameter (0.56) 
are less than those estimated by allowing the focal parameter to vary (from −1 to 1). 
A negative and significant effect means that the focal (in this case, self-monitoring) 
parameter has a measurable and significant effect on reducing the error for crew 
social relations; as such it plays a significant role in matching the social relations 
in the simulated and empirical model. The procedure is repeated for all parameters 
estimated.

Model VAlidAtion

Having a calibrated model with parameter estimates begs the inevitable next ques-
tion. How well did we do? The next phase is validation, in which our goal is to 
assess the extent to which simulation results from our agent-based model provides 
a useful reflection of observed data. There are three types of validation on which 
we focus: We confirm face validity, the extent to which the variables and mech-
anisms make intuitive sense for the phenomenon we are modeling, by relying on 
extant theory. Because we are producing a model to mimic reality, our goal is to 
check that the structure of our model is reasonable, before moving onto empirical 
approaches for assessing validity. For instance, we would expect that at least some 
of the parameter estimates for variables impacting crew relations have theoretical 
plausibility. Consider the result we reported in the previous section that workload 
schedules make crew members less likely to enjoy working with others. While not 
groundbreaking, results such as these help confirm the face validity of the model 
and open up the possibility for taking seriously, and puzzling over, some potentially 
counter-intuitive estimates.

We next seek to confirm internal validity, the extent to which our model can 
explain what happens in the data we empirically observed. Specifically, we conduct 
direct comparisons between our predicted and simulated results for the same data 
set. Alongside face validity, these tests determine the extent to which the rules in the 
model are able to generate patterns in the simulated data that are aligned with the 
observed data. For instance, we examine plots of the number of relations for each 
crew in our simulations, in comparison with their observed values, as well as the 
predictive performance of our model at different points in time. Overall, we confirm 
that our model tends to mirror the aggregate trends in the data used to estimate it.

Finally, we consider issues of external validity. A key question, for an emulative 
agent-based model in particular, is how well the model performs at making predic-
tions for an unobserved crew? With a limited sample of crews, the best approach 
to estimating the predictive performance of our model is through cross validation. 
Given we have observed eight independent crews, we perform eight-fold cross vali-
dation: We select one crew to hold out as a test set, estimate our models’ parameters 
using data from the remaining seven crews, and then use this set of parameters to 
simulate the held-out crew. These simulated ties are compared with the empirically 
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observed data to evaluate predictive performance. By repeating this process eight 
times, using each crew as the test set once, we obtain an estimate of how well our 
model would predict relations for a future crew.

To evaluate our model, we examine the confusion matrix cross tab between pres-
ence or absence of predicted and observed ties, alongside summary statistics such 
as accuracy, precision, recall, F1 scores, ROC curves, and precision–recall curves 
(Davis & Goadrich, 2006; Fawcett, 2006). These summary measures provide a bet-
ter understanding of model quality than accuracy alone, especially in the case where 
the relationship being predicted is either very frequently present, or very frequently 
absent. For instance, in our data, task affect relations are present 81.3% of the time, 
and task hindrance ties occur only 23.3% of the time. In this case, a trivial classi-
fier predicting that all task affect ties exist and no task hindrance ties exist would 
obtain deceptively impressive but fundamentally useless accuracy scores of 81.3% 
and 76.7%, respectively. Such a classifier would not be useful practically in distin-
guishing who is likely to have a certain tie. Therefore other performance metrics, 
beyond accuracy, must be assessed.

Specifically, we compute (1) Precision scores which indicate the percent of pre-
dicted ties that were observed in real crews, (2) Recall scores which indicate the 
percent of observed ties that were correctly predicted by our model, and (3) F1 scores, 
which use the harmonic mean of precision and recall as a measure of performance. 
Results of our model validation for predicting ‘who crew members enjoy working 
with’ achieved average F1 scores of 0.85 for internal validity (on the training data 
set) and average F1 scores of 0.81 for external validity (on a test data set). However, 
the results of our model validation for predicting who crew members cite as ‘making 
tasks difficult to complete’ (i.e. hindrance ties), our average F1 scores for internal 
validation fell to 0.56 and for external validation fell to 0.37. The disparity in validity 
between the two types of social relations is, at least in part, an artifact of the rela-
tively sparse number of observed hindrance ties as compared with task affect ties, 
thus making it more difficult to capture that signal adequately.

With small-sample data, cross-validation testing is critical to ensure we are 
not overfitting our model to nongeneralizable specifics of our observed crews. 
Additionally, such estimates of performance are necessary when assessing whether 
our model will be able to make predictions of sufficient quality to be used in practice. 
This type of validation, in particular, identification of uncertainty in predictions, 
has been considered critical by NASA in its published Standards for Models and 
Simulations (Steele, 2007; NASA Standard, 2009).

The greatest challenge we will encounter, in modeling space exploration, how-
ever, is our reliance on analog data. What we observe in 30- to 45-day analog mis-
sions will not fully reflect the empirical realities of LDSE, and thus our findings may 
not completely generalize to these crews. Cross-validation testing cannot account 
for these issues. As we work toward building models usable for real-world decision-
making, there is a need to start testing analog models outside of HERA – testing our 
models in scenarios involving longer missions, more extreme environments, differ-
ent types of work, and multinational crews. Assessing generalizability in a varied 
ensemble of LDSE analogs (e.g. Antarctic studies, SIRIUS and HI-SEAS analogs) 
will be the best we can do prior to working on actual space missions.
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Model AppliCAtion

Virtual Experiments
We began the process of constructing an ABM with the selection of variables 
informed by prior theory and research. The ABM we constructed was then cali-
brated using empirical data collected specifically to test this model. Next, we vali-
dated the ABM to assess how well the data simulated from our ABM aligned with 
the data used to calibrate it and subsequently how well it predicted crew relations 
for an out-of-sample data set that was not used to calibrate it. Once the ABM passes 
muster through these three stages (construction, calibration, and validation), it is 
ready to be deployed for the final stage of model application. As mentioned earlier, 
we conduct virtual experiments at the model application stage to predict what might 
happen in a hypothetical team as well as evaluate various prescriptive actions to 
mitigate potential problems that are predicted.

Starting with HERA Campaign 5 in early 2019, we have been conducting virtual 
experiments to predict in-mission crew dynamics in HERA missions based only 
on pre-mission data we collect about the composition of the crew. These virtual 
experiments allow us to predict in silico the dynamics for a crew that has not actu-
ally deployed but is based on an ABM calibrated and validated with other crews. 
We use the results of these virtual experiments to identify which crew relations 
might reach dysfunctional levels and when during the mission this is likely to occur. 
Once these potential pain points have been predicted, we use virtual experiments 
to explore prescriptive strategies to mitigate against them. One arrow in our quiver 
of  mitigation strategies is the task schedule. As mentioned previously, HERA crews 
like their counterparts in space, work on a strictly regimented task schedule. The 
‘playbook’ assigns specific time slots each day for the completion of solo as well as 
tasks assigned to pairs, three members or the entire crew. In the event of a poten-
tial relational issue between two crew members, we run virtual experiments where 
we keep everything the same except making tweaks to the schedule of which crew 
members are paired with one another and on which tasks. For instance, we might 
run a virtual experiment to see if a good mitigation strategy might be to not schedule 
tasks for a specific crew pairing as part of a ‘cooling-off’ period. Alternatively we 
can conduct virtual experiments that schedule tasks for these two crew members 
with a third member they both enjoy working with. Yet another mitigation strategy 
we explore is to pair them only on tasks at which they excel to explore if joint success 
on the task repairs the relationship.

TRANSLATING SCIENCE TO PRACTICE

So far, we have described the steps by which agent-based models are developed and 
evaluated for their predictive and prescriptive capabilities. However, our  ultimate 
goal is to produce models that are able to be used by actual decision makers. In 
 anticipation of that eventuality, we have developed a prototype dashboard for use 
 pre-mission by decision makers for crew selection and in-mission by  decision 
 makers for planning and operations. The dashboard called TEAMSTAR (Tool for 
Evaluating And Mitigating Space Team Risk) has one fundamental goal: make 
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insights from our ABM accessible to decision makers without them requiring any 
knowledge of agent-based modeling. As such TEAMSTAR aspires to be both a 
dashboard – and a ‘do-board.’

TEAMSTAR is powered at the back-end by ABM and requires the administrator 
to upload relevant data (e.g., attributes of potential team members, prior relations, 
task schedules).

Prior to the mission, TEAMSTAR provides decision makers with an easy to use 
interface to predict how a hypothetical team’s social relations are likely to evolve over 
the course of a mission. The decision maker selects a pool of potential crew members 
and then composes hypothetical teams by simply binning names of hypothetical 
teams (Figure 6.4). TEAMSTAR runs the virtual experiments in the background 
and provides decision makers with predictions about the relationships between crew 
members at any point in time over the upcoming mission (Figure 6.5).

To be useful, a predictive team composition model needs to be flexible in terms 
of staffing capabilities, and its ability to estimate risks associated with different 
hypothetical crews. First, different staffing strategies can be used when composing 
teams. One strategy is for the compatibility of all crewmembers to be considered 
simultaneously. Another strategy is to first identify critical team members (e.g., the 
commander) and then assess the remaining crew members’ compatibility with those 
critical members. Because LDSE-crews are expected to be multinational, there may 
be little ability to influence the decision to select all team members, and instead the 
compatibility of a particular individual or set of individuals will need to be consid-
ered. Thus, a predictive team composition model needs to be flexible in its ability to 
inform different staffing strategies.

The ABM powering TEAMSTAR will enable decision makers to evaluate com-
position scenarios for an entire set of teams, for single-member replacements, and/
or for subsets of teams. This will maximize its utility given that, in international 
missions, only some of the astronauts will be selected by NASA. TEAMSTAR 

FIGURE 6.4 Selecting hypothetical crews to predict their dynamics.
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can also be useful in re-staffing teams should a member be replaced during pre-
mission training, recommending a best replacement member to NASA from a set 
of alternatives.

Once in-mission, TEAMSTAR projects how the team is likely to evolve in terms 
of risk markers such as social integration, team processes (e.g., conflict), and emer-
gent states (e.g., shared mental models). Since the ABM is both temporal and rela-
tional in nature, TEAMSTAR also produces detailed results on what social relations 
and overall crew cohesion looked like in the past and will look like in the future, 
with confidence intervals for these predictions (Figure 6.6). Second, because there 
may be constraints on the ability to influence the team’s composition as a whole, 

FIGURE 6.5 Predicting team dynamics for a hypothetical team pre-launch.

FIGURE 6.6 Past and projected trends of a crew pathway into the mission.
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it is important to understand the risks associated with the team’s composition. With 
a predictive model of team composition, different risks (e.g., subgrouping, conflict, 
 difficulty maintaining shared mental models) can be estimated for proposed or 
 current crew compositions. Personalized medicine acknowledges that not all humans 
have the same needs; these individualized needs should provide the basis for coun-
termeasures in human space flight (Schmidt & Goodwin, 2013). In the same way, 
not all crews will have the same needs. Estimated risks from the predictive model of 
team composition can be used to understand the training needs of a specific crew and 
guide the development and strategic application of countermeasures. In-flight coun-
termeasures could be mapped to specific crew compositions and risks. For example, 
for a crew composition that has a high risk for subgroup conflict across national 
background, mission control could provide ‘critical’ work, specifically encouraging 
members from different subgroups to work interdependently, at key points in the 
crew’s life cycle.

CONCLUSION

This chapter has sought to introduce how an agent-based modeling approach can 
be used to describe, predict, and prescribe the consequences of team composition: 
We have described the development of an emulative agent-based model of social 
relations in crews, illustrating the process of model construction, model calibration, 
model validation, and model application.

We recommend the following resources for those interested in learning more 
about agent-based modeling processes (Wilensky & Rand, 2015; Gilbert, 2007; 
Heath, Hill, & Ciarallo, 2009), software for implementing agent-based models (e.g. 
Netlogo, Repast), and approaches for estimating and validating agent-based models 
(Thiele, Kurth, & Grimm, 2014). A future direction, for models such as ours, may 
be better quantification of the statistical uncertainty around model parameters. In 
particular, Bayesian approaches have been identified as promising for extremes team 
research, due to their ability to represent uncertainty and incorporate extant prior 
knowledge into these assessments (Bell et al., 2018).

Our model is not without limitation. In developing a model for space explora-
tion, we struggled with choices between constructing models that were more exhaus-
tive, or more selective, in their scope. There is, naturally, a desire for researchers to 
build more integrative models. If more variables and mechanisms are included in a 
model, more nuances can be represented, and the influences of all these variables 
and mechanisms can fully be considered when using the models for prediction or 
decision-making. However, in the presence of a finite sample of data, including too 
many related or correlated variables can diminish our certainty about the ‘true’ or 
‘best’ value of the model parameters for each one. This trade-off will be a key con-
sideration for all models developed for space exploration teams. As an oft quoted 
statistical aphorism states, ‘all models are wrong but some are useful’ (Box, 1979). 
We will never have a perfect model for space crew composition, but hopefully we can 
keep building better models that are highly useful.

Overall, we have demonstrated a proof-of-concept of the potential role that agent-
based models could serve in helping prepare future crews for long-duration space 
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exploration. We hope that this work lays the foundation for future researchers or 
 practitioners interested in developing agent-based models for space exploration crews. 
As more and more data is gathered from space exploration analogs,  progressively 
more nuanced agent-based models can be developed for space exploration.

One final note: Over the past six decades, research conducted for space  missions 
have had significant knowledge spillover in various sectors back on Earth. For 
instance, we have NASA to thank for the cordless drills originally designed to help 
astronauts drill on the surface of the moon. High-intensity LED (light emitting 
diodes) were developed for the NASA shuttles, but are now making great advances 
in power efficiency back on Earth. Astronauts needed something to keep their 
recycled water clean. NASA invented a filter with activated charcoal to neutralize 
pathogens. These technologies are used extensively around the world, including the 
Global South. Remarkably, all of these innovations have spun out of technological 
and health challenges faced in space. Today we are on the brink of an innovation 
that will have spun out of a social science challenge –  anticipating and  mitigating 
social dynamics in teams. Alongside important conversations about ethics and 
privacy, we are beginning to see interest in deploying advanced people analyt-
ics, especially relational analytics (Leonardi & Contractor, 2018) that will extend 
the models and methodology developed for space missions and apply them to the 
changing nature of work here on earth – and perhaps some day in  interplanetary 
work contexts.
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