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Abstract. We demonstrate an approach to perform significance testing
on the association between two different network-level properties, based
on the observation of multiple networks over time. This approach may
be applied, for instance, to evaluate how patterns of social relationships
within teams are associated with team performance on different tasks.
We apply this approach to understand the team processes of crews in
long-duration space exploration analogs. Using data collected from crews
in NASA analogs, we identify how interpersonal network patterns among
crew members relate to performance on various tasks. In our significance
testing, we control for complex interdependencies between network ties:
structural patterns, such as reciprocity, and temporal patterns in how
ties tend to form or dissolve over time. To accomplish this, Separable
Temporal Exponential Random Graph Models (STERGMs) are used as
a parametric approach for sampling from the null distribution, in order
to calculate p-values.

Keywords: Network properties - Team performance + Separable
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1 Introduction

Across many areas of network science, research often asks questions about how
different network-level properties or outcomes are related. For instance, when
studying networks between team members, researchers may examine whether
properties of the whole team’s network, such as density or centralization, impact
the performance of that team. In this case, each network may have one score
for density and one score for team performance, and through the observation of
multiple networks, a correlation between density and team performance can be
computed. However, it is important to assess the potential spuriousness of these
correlations, especially when working with a small sample of networks.

When correlations involve network statistics, functions that return a single
score computed from a network, proper significance testing may be challenging.
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The ties and node attributes that determine the value of the network statistic
often are not statistically independent of one another. Complex interdependen-
cies may exist between ties and node attributes within the same network: for
instance, ties may tend to be reciprocated, or ties may be more likely between
nodes of the same gender. We will refer to this type of interdependency as struc-
tural patterns in how ties form. Additionally, in the event that researchers have
collected data at multiple points in time, there may be complex interdependen-
cies between ties in repeat observations of the same nodes. For instance, if a tie
exists between individuals at one point in time, it is natural to expect that tie
to be more likely to exist the next time these individuals are observed. We will
refer to this type of interdependency as temporal patterns in how ties form.

We argue that, when the value of network statistics being observed may be
influenced by structural patterns or temporal patterns in how network form, sig-
nificance tests of correlations involving these network statistics need to control
for these patterns. An existing modeling approach, Separable Temporal Expo-
nential Random Graph Models (STERGM) provides a way to identify both
structural and temporal patterns [7]. We demonstrate how, when computing p-
values for correlations involving network statistics, STERGMs can be used as a
parametric approach for sampling from the null distribution.

We will apply this approach to understand team processes in the crews of
long-duration space exploration (LDSE) missions, linking different patterns of
social relations between crew members to measures of crew performance on var-
ious tasks. This form of significance testing is particularly beneficial to data
collected in LDSE analogs such as those operated by NASA (e.g., Human Explo-
ration Research Analog [HERA]), in which relatively few crews may be observed,
but at multiple points in time. We demonstrate how crew performance on dif-
ferent tasks benefits from different types of network structure.

2 DMotivation

To identify network influences on team performance, our goal is to quantify the
possibility that observed correlations may be spurious. We frame our analysis
around the null hypothesis that there is, in fact, no correlation between any two
variables being tested. In this case, these variables will be some network statistic
computed from a team’s network and team performance. Based on the data we
collected, we can compute an observed correlation coefficient, and an empiri-
cal p-value. The empirical p-value reflects the probability that we would find a
correlation coefficient equal to or more extreme than the observed correlation
coefficient in the event that there was no correlation between the network statis-
tic and team performance. We will consider what issues structural and temporal
patterns may introduce for such an analysis.

2.1 Influence of Structural Patterns

To understand the impact of structural patterns on correlation coefficients, con-
sider a study of four-person teams. If we were to examine the network statistic of
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closeness centralization [4], for a directed network there are 27 possible scores a
four-person team can have for closeness centralization. Closeness centralization
is a deterministic function of the 12 ties in the team. The likelihood of observing
each of the 27 levels of closeness centralization may vary depending on structural
patterns present, such as reciprocity, closure, or homophily. Under the influence
of different structural patterns, different values of network statistics, and there-
fore correlation coefficients, may be more or less likely to occur by chance alone.
Considering this, knowledge about structural patterns should inform how “sur-
prising” it would be to observe a given correlation coefficient in the event that
our null hypothesis is true.

2.2 Influence of Temporal Patterns

Further complications may be introduced if a researcher wishes to incorpo-
rate multiple observations of a team’s performance over time. Repeat obser-
vations may contain new information to help inform conclusions about team
performance. To leverage such observations, we would want to control for non-
independence (ex. autocorrelations) between the network statistics in repeat
observations of a team. This can be accomplished by modeling temporal depen-
dencies between a tie’s current value, that tie’s past or future values, and other
ties” past or future values. These may be simple trends, like the tendency of a
tie to continue existing over time, or more complex trends, like the tendency
of ties to form if doing so would complete a transitive triad. If there is not a
way to control for these types of patterns, using repeated observations of a team
would be problematic. Using multiple observations of a team may be critical in
research contexts where obtaining data from additional teams may be costly or
impossible, but teams are able to be studied for an extended period of time.

2.3 Existing Approaches

The development of null models for significance testing has a long history in net-
work science, because interdependencies between ties must be controlled for when
performing significance testing. Two fundamental approaches for significance
testing when dealing with such interdependencies are nonparametric approaches
and parametric approaches for sampling from the null distribution. Nonparamet-
ric approaches often rely on a type of permutation test, in which observations
are shuffled in some systematic way. For example, Quadratic Assignment Pro-
cedure (QAP) and its extension multiple regression QAP (MRQAP) are often
used to test correlations between the presence of ties in two or more networks
by performing random relabeling of nodes in each permutation while keeping
network structure constant [5,6]. Alternatively, approaches based on network
rewiring are often used to permute the location of ties or events in a network
while maintaining properties of that network’s degree distribution [12,14].
Parametric approaches entail the estimation of a model to sample from the
null distribution, the distribution of the test statistic (ex. correlation coefficient)
that would be observed in the event that the null hypothesis was true. Whereas
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nonparametric approaches all either maintain network structure or specify exact
rules for how network structure should be permuted, a parametric approach can
estimate, based on data, the types of complex interdependencies that exist and
perform appropriate permutations to control for them.

We propose a parametric approach for significance tests involving network-
level statistics, in which both structural patterns and temporal patterns are
modeled using STERGM. This approach will offer the distinct benefit of allowing
observations of networks at multiple points in time to be used, by modeling how
networks change between observations when sampling from the null distribution.

3 Approach for Testing the Influence of Network
Structure on Team-Level Performance

Let us assume we have observed networks between team members, including
different node attributes or other exogenous attributes that may affect network
formation. Some of these networks may be collected from the same team at
multiple points in time. We will refer to an ordered set of networks we collect
from the same team as a temporal path of networks. We also assume that we have
measured some performance metric, which assigns a single score to each network.
Finally, we assume we have chosen a network statistic, a deterministic function of
the ties and node attributes in a network, that we are interested in correlating
with our performance metric. Our goal will be to assess the probability our
sample might produce a correlation as extreme as the one observed if there was
truly no correlation between our network statistic and performance metric.

We begin by calculating the correlation between the network statistic for
each network and the corresponding performance metric from our empirical data.
This produces the empirically observed correlation coefficient. While any form of
correlation could be used, we suggest that due to the discrete or non-normally
distributed nature of many network statistics it would often be appropriate to use
a Spearman rank correlation coefficient [17]. Our approach will aim to estimate
the probability that we would observe a correlation coefficient that extreme, if
there was truly no correlation between our network statistic and performance
metric in the full population. This is the empirical p-value. To conduct such
a test, we want to control for structural and temporal patterns shaping how
networks form. To accomplish this, we must define a version of the null model
that accounts for each of these trends that may occur in the observed networks.

We propose using Separable Temporal Exponential Random Graph models
(STERGM) as a flexible framework to construct our null models [7]. STERGMs
describe how networks are likely to change over time by defining a joint prob-
ability distribution for the presence of ties in a series of repeat observations of
networks. This distribution is defined by two sets of assumed sufficient statis-
tics: A vector of formation statistics g~ () and their corresponding weights 6~
describe how likely it is that a subset of ties Y~ that did not exist in a pre-
vious network Y* will form. A vector of persistence statistics g () and their
corresponding weights % describe how likely it is that the subset of ties Y
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that existed in a previous network Y* will continue to exist. In both cases, the
assumed sufficient statistics are a function of both the ties being predicted and
some dyadic or node covariates X. The joint probability of each subset of ties,
for a network at a single point in time, is expressed as:
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STERGMs are estimated using conditional maximum likelihood estimation as
described in Krivitsky & Handcock 2014, in our case applying this technique to
estimate a single model that jointly captures trends that occur amongst all of
the temporal paths of networks we observed. As part of this estimation, as with
any STERGM model, model convergence and goodness of fit should be assessed
in order to make sure that the parameter estimation was successful and that the
model replicates trends observed in the empirical data.

In comparison to TERGMs or ERGMs, STERGMs offer the benefit of repre-
senting complex temporal patterns in either the formation or persistence of ties
between observations. Thus, when using multiple observations from the same
networks over time, this provides an explicit mechanism for controlling for tem-
poral dependencies between them when sampling from the null distribution.

STERGMs fit to our data are used to sample correlation coefficients from
the null distribution. We simulate random networks according to the STERGM
using Markov Chain Monte Carlo (MCMC) sampling. To obtain a simulated cor-
relation coefficient, we take each different team in our dataset and simulate that
team’s temporal path of networks based on the node attributes and exogenous
factor values for that team. We then calculate a correlation between the network
statistics for all of the simulated networks and the performance metric for each
network that we observed in our empirical data. By repeating this, we obtain a
sample that approximates the null distribution, the distribution of correlation
coefficients we would obtain based on our null model.

We then compare the empirically observed correlation coefficient to our sam-
ples from the null distribution. If we let n denote the total sample size of simu-
lated correlation coefficients and k as the count of simulated correlation coeffi-
cients that are at least as extreme as our observed correlation coefficient (greater
than or equal to if positive, less than or equal to if negative), then we estimate
the p-value as the ratio k/n.

P(Y =y7)= (1)

P(Y"=y") =

(2)

4 Application: Relational Indicators of Crew Success in
Long-Duration Space Exploration

We will examine how different patterns of social relations between crew mem-
bers of long-duration space exploration missions are associated with crew per-
formance. Future lunar and Mars missions will entail extended trips, in which a
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small crew must work together more effectively and autonomously, since commu-
nication delays will grow as the crew travels away from the earth. Thus, effective
team processes will be critical to team success [15]. By understanding the effects
of social networks on crew performance, space agencies will better able to staff
and support crews on these missions by examining their interpersonal relations.
A challenge in research about long-duration space exploration (LDSE) is the
limited ability of relevant data. One environment for collecting data is LDSE-
analogs, in which participants may complete tasks typical of LDSE while living in
an isolated environment for an extended time [9]. These analogs allow researchers
to collect high-quality data from only a small number of crews over an extended
time. Because of this, there is a need for analysis capable of leveraging repeated
observations of a team to test what factors impact crew performance [2].

4.1 Measures

Research Setting. Data was collected from the Human Exploration Research
Analog (HERA), an extended simulation of space exploration that is operated
by NASA at the Johnson Space Center in Houston, Texas. Participants in HERA
missions completed tasks over the course of a 30 or 45day mission that simu-
lated space exploration, remaining confined in the HERA capsule for the entire
duration. Over the course of missions, participants experienced long shifts, sleep
deprivation, communication delay with ground control, and emergency simula-
tions designed by NASA to provide a realistic simulation of space exploration.

Respondents. FEight four-person crews completed analog space missions
between January 2016 and June 2018. Four crews completed 30 day missions,
and four completed 45 day missions. Each crew had a designated commander, a
flight engineer, and two mission specialists. Of the 32 respondents, 59.4% were
female, the average age was 38.0 years (s.d. = 7.98), and 34.4% had military
experience. When asked about their race/ethnicity, 24 respondents selected Cau-
casian non-Hispanic, two selected Caucasian Hispanic, two selected East Asian,
one selected South/Southeast Asian, one selected African American, and two
selected “Other”.

Performance Dimensions. Team performance measures the degree to which
a team accomplishes its goals. Four dimensions of performance are summa-
rized by McGrath’s Task Circumplex [13]. We used measures derived from
four tasks reported in Larson et al., 2019 [10]. The Generate task required
the crew to develop new ideas. The Choose task required them to solve
a survival scenario with a known solution. The Negotiate task required
them to resolve an ethical dilemma incorporating multiple conflicting view-
points. The FEzecute task was a simulation in which a pilot and co-pilot
use a joystick to fly a transit vehicle to collection sites, while the other
two crew members use virtual reality goggles to complete Extra Vehicu-
lar Activity exploring an asteroid’s surface. For the four 30-day missions,
these tasks were administered three times, on mission days 10, 15, and 29.
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For the four 45-day missions, the tasks were completed four times, on days 13,
18, 27, and 41. This produced a total of 28 observations of team performance.

Social Relations. Social networks were elicited from the crew via sociometric
surveys. We included measures of four relational networks to capture a long-
standing distinction in the small group literature on task and social needs. Task
affect and task hindrance capture positive and negative working relationships
among crew members. Task affect was measured with the prompt: “With whom
do you enjoy working?” Task hindrance was elicited with the prompt: “Who
makes tasks difficult to complete?” In addition to assessing manifest social rela-
tions, we also included two networks capturing behavioral and motivational
aspects of teams: leadership and followership. Leadership was elicited by asking
“To whom do you provide leadership?” Followership relations were assessed by
asking: “Who do you rely on for leadership?” These prompts yielded four directed
networks, each examined in relation to performance. Performance scores from
each task session were matched with the network survey most closely proceeding
the task. For the 30-day missions, social networks and performance, respectively
were measured on the following pairs of days: days 9 and 10, 14 and 15, and 27
and 29. For the 45-day missions, networks and performance events, respectively,
were measured on these pairs of days: 11 and 13, 15 and 18, 26 and 27, and 39
and 41.

Network Statistics. While network density, the ratio of observed to possible
ties, may influence performance directly, where ties are located relative to one
another may also impact performance (Fig. 1). Network theories of teams posit
the degree of closure, centralization, and subgrouping among team members are
important reflections of the quality of teamwork and the team’s capacity to
perform [3]. We selected six network statistics based on these three categories,
in addition density, to test their impact on crew performance.

NN N

Reciprocity Transitive Triple Cyclic Triple Two-Paths

o+—>0

Fig. 1. Basic network structures used in defining network statistics

For the closure category, we measured normalized transitivity and normal-
ized cyclicality. Normalized transitivity controls for density effects, computing
transitivity of a graph as the number of transitive triples divided by the average
number of transitive triples in a random graph of the same density. The same
approach was used to define a statistic for normalized cyclicality, normalizing by
the expected number of cyclic triples.
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To examine centralization, we include closeness centralization, relative dis-
crepancies in closeness, as defined in Freeman 1978, between team members.
Closeness centrality ranks team members based on the proportion of the short-
est paths between all team members on which they lie. A team in which each
member had a similar closeness centrality would have a lower value of closeness
centralization, whereas a team with big differences in closeness centralization
would have a high value. Given that our crews include a team member assigned
to the role of commander, we also examined centralization using the relative
indegree of commander, measuring the proportion of all ties directed towards
the commander, and the relative outdegree of commander, measuring the pro-
portion of all ties directed from the commander towards others.

To examine subgrouping in four-person networks, we consider the amount
of two-paths, chains of ties spanning between three crew members, as a way of
measuring a tendency against subgrouping. We include a statistic for normalized
two-paths, using the same approach to normalizing the count of two-paths based
on density as used for transitivity and cyclicality.

Controls for Structural and Temporal Patterns. Because teams are
observed at multiple points in times, null models need to control for repeated
observations of the same team. This is accomplished by including corresponding
sufficient statistics in the STERGMs. The first temporal pattern we control for
is tie formation, the likelihood that a new tie will form where a tie had not
previously existed, by including a tie likelihood term in the formation model
that counts the number of ties in the network. Similarly, we also control for tie
persistence, the likelihood that a tie that has previously existed will continue to
exist, by including a tie likelihood term in the persistence model.

Next, we considered the potential effects of extended isolation, in which a
crew is forced to work and live together while working long shifts. We included
terms for the effects of elapsed time in isolation on the likelihood of new ties
to form and for effects of elapsed time in isolation on the likelihood of existing
ties to persist. We also included a time between observations term that examines
the effect of the time, in days, since the network data were last collected. This
controls for the fact that our data was not collected in uniformly spaced intervals.

Another well documented structural pattern is reciprocity. We include mea-
sures for the count of reciprocated ties in our STERGMSs, to control for ten-
dencies of new ties to be more or less likely to form reciprocated pairs, as well
as for existing ties in reciprocated pairs to be more or less likely to persist.
Finally, we control for potential homophily effects in our models for formation
and persistence terms for race homophily and military experience homophily.

4.2 Analysis

To develop a null model for our analysis, we estimated one STERGM for each of
the four ties, using the temporal networks collected from all teams. STERGMs
were fit using Conditional Maximum Likelihood Estimation [7], as implemented
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in the tergm package developed for R [8]. To measure the association between a
network statistics and performance metric, we used Spearman rank correlation
coefficients [17]. P-values were computed for these correlation coefficients using
our approach for sampling from the coefficients’ null distribution. A total of 250
simulated values of correlation coefficients were utilized.

4.3 Results

Descriptive Results. Intercorrelations between performance scores across the
four task dimensions, as well as intercorrelations for the presence of ties in the
four networks, are reported in Table 1. In particular, we note that the Spear-
man rank correlation coefficient between any two of the performance dimensions
ranged between —0.62 and 0.38. Because they are not perfectly correlated, it
is critical we separately analyze the associations between network structure and
each dimension of team performance. The 28 task affect networks had an average
density of 0.83 (s.d. = 0.13). Task hindrance networks had an average density
of 0.23 (s.d. = 0.16), leadership networks had an average density of 0.79 (s.d. =
0.17), and followership networks had an average density of 0.63 (s.d. = 0.22).

Table 1. Intercorrelations for team performance and network ties

Performance Measure Intercorrelations Network Tie Intercorrelations
Generate Choose Negotiate Execute Task Affect Task Hindrance  Leadership Followership

Generate - 0.15 -0.23 -0.11 Task Affect - -0.49 0.11 0.39

Choose - -0.28 -0.62 Task Hindrance - 0.06 -0.28
Negotiate - 038 Leadership - 0.17

Execute - Followership -

Table 2. STERGM results for each social relation
Task Affect Task Hindrance Leadership Followership
Log-Odds Odds Ratio Log-Odds Odds Ratio Log-Odds Odds Ratio Log-Odds Odds Ratio

Formation Coefficients
Tie Likelihood 0.78 (1.04) 2.19 -3.48 (0.87) * 0.03 -0.84 (0.82) 0.43 -0.82 (0.71) 0.44
Elapsed Time in Isolation -0.26 (0.05) * 0.77 -0.10 (0.02) * 0.91 -0.18 (0.03) * 0.83 -0.12 (0.02) * 0.89
Time Between Observations -0.02 (0.09) 0.98 0.22 (0.08) * 1.24 0.13 (0.07) ° 1.14 0.13 (0.06) * 1.14
Reciprocity 1.12 (0.78) 3.06 0.24 (0.50) 1.28 0.65 (0.56) 1.91 0.40 (0.44) 1.50
Race Homophily 1.49 (0.60) * 443 -0.05 (0.35) 0.95 0.79 (0.42) -~ 2.19 -0.16 (0.33) 0.85
Military Experience Homophily 0.24 (0.53) 127 0.55 (0.36) 1.74 0.55 (0.40) 1.74 0.14 (0.33) 115
Dissolution Coefficients
Tie Likelihood 3.35(1.12) * 28.64 -1.82(1.10) 0.16 298 (1.11) * 19.70 2.12(0.78) * 8.35
Elapsed Time in Isolation 0.04 (0.07) 1.04 -0.03 (0.09) 0.97 0.09 (0.06) 1.09 0.02 (0.05) 1.02
Time Between Observations -0.06 (0.09) 0.94 0.08 (0.12) 1.08  -0.19 (0.09) * 0.82 -0.08 (0.08) 0.93
Reciprocity -0.01 (0.71) 0.99  -0.73 (1.10) 0.48 0.12 (0.60) 1.13 0.43 (0.49) 1.54
Race Homophily -0.82 (0.58) 0.44 1.69 (0.86) * 539 -0.14 (0.50) 0.87  -0.60 (0.45) 0.55
Military Experience Homophily -0.90 (0.56) 0.41 2.25(0.93) * 948 -0.32(0.53) 0.73 0.06 (0.44) 1.06
AIC 178.9 89.64 182.8 193.7
BIC 203.3 105.1 206.8 216.3

Standard error in parentheses. * p<0.05, * p <0.10
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Table 3. Correlation testing results for each social relation
TASK AFFECT NETWORKS
Performance Measures
Generate Choose Negotiate Execute
Network Properties
Density 0.30 (0.37) -0.30 (0.08) 0.15(0.00) * 0.45 (0.00) *
Normalized Transitivity -0.27 (0.29) 0.22 (0.33) -0.17 (0.05) *  -0.38 (0.08)
Normalized Cyclicality -0.20 (0.39) 0.27 (0.30) 0.31(0.23) 0.47 (0.00) *
Closeness Centralization -0.33 (0.00) * 0.23 (0.00) * -0.13 (0.24) -0.43 (0.00) *
Relative Indegree of Commander 0.28 (0.12) 0.03 (0.00) * -0.19(0.41) -0.04 (0.01) *
Relative Outdegree of Commander -0.02 (0.02) *  -0.27 (0.50) 0.42 (0.00) * 0.26 (0.08)
Normalized Two-Paths -0.25 (0.50) 0.33 (0.06) 0.17 (0.77) -0.23 (0.02) *
TASK HINDRANCE NETWORKS
Performance Measures
Generate Choose Negotiate Execute
Network Properties
Density -0.23 (0.18) 0.30 (0.01) * 0.13(0.24) -0.34 (0.06)
Normalized Transitivity -0.13 (0.34) 0.11 (0.21) 0.00 (0.51) -0.17 (0.15)
Normalized Cyclicality -0.28 (0.10) 0.10 (0.20) 0.27 (0.17) 0.02 (0.35)
Closeness Centralization -0.19 (0.18) 0.08 (0.16) -0.14 (0.35) -0.25(0.03) *
Relative Indegree of Commander 0.01 (0.72) 0.00 (0.92) 0.38 (0.01) * 0.26 (0.09)
Relative Outdegree of Commander 0.03 (0.70) 0.36 (0.00) * -0.30(0.21) -0.54 (0.00) *
Normalized Two-Paths 0.25 (0.05) 0.30 (0.03) * 0.07(0.31) -0.19 (0.19)
LEADERSHIP NETWORKS
Performance Measures
Generate Choose Negotiate Execute
Network Properties
Density 0.35(0.17) -0.40 (0.01) *  0.21(0.00) * 0.35(0.00) *
Normalized Transitivity -0.41 (0.04) *  0.28 (0.26) -0.20 (0.03) *  -0.20 (0.27)
Normalized Cyclicality 0.20 (0.03) * -0.32(0.00) * -0.08 (0.22) 0.44 (0.00) *
Closeness Centralization -0.43 (0.00) * 0.42 (0.00) * -0.15(0.41) -0.33 (0.00) *
Relative Indegree of Commander 0.36 (0.05) * -0.33 (0.28) -0.10 (0.71) 0.20 (0.10)
Relative Outdegree of Commander -0.05 (0.00) * 0.40 (0.00) * -0.14 (0.65) -0.31 (0.00) *
Normalized Two-Paths 0.08 (0.00) * -0.39 (0.00) * 0.09 (0.82) 0.50 (0.00) *
FOLLOWERSHIP NETWORKS
Performance Measures
Generate Choose Negotiate Execute
Network Properties
Density 0.03 (0.76) -0.40 (0.04) *  0.36 (0.00) * 0.38 (0.00) *
Normalized Transitivity -0.05 (0.56) 0.14 (0.36) 0.00 (0.69) -0.13 (0.36)
Normalized Cyclicality -0.19 (0.22) -0.37 (0.03) * 0.36(0.03) * 0.32 (0.05)
Closeness Centralization -0.03 (0.04) * 0.18 (0.00) * -0.03 (0.88) -0.22 (0.00) *
Relative Indegree of Commander -0.21 (0.00) * 0.36 (0.00) * -0.44(0.02) * -0.32(0.00) *
Relative Outdegree of Commander 0.05 (0.89) -0.08 (0.97) 0.20 (0.00) * 0.18 (0.19)
Normalized Two-Paths 0.04 (0.14) -0.29 (0.01) *  0.28 (0.25) 0.16 (0.09)

P-value in parentheses. * p<0.05, " p <0.10



1028 B. Antone et al.

Correlation Significance Testing. Table2 presents the parameter estimates
from separate STERGM models for each network, which were used to perform
sampling from the null distribution. Table 3 reports the Spearman rank correla-
tion coefficient between each of the network statistics and performance, alongside
p-values for each, calculated using our method to generate a null distribution
from 250 simulated correlation coefficients. For brevity, we describe the network
relation with the strongest association with each performance dimension.
Naturally, multiple testing problems [1] occur when performing a large quan-
tity of significance tests. Since we intended this as an exploratory analysis, we
did not account for multiple testing effects here. For stricter hypothesis testing,
p-values should be adjusted using an approach such as Bonferroni correction [1].
For task affect ties, closeness centralization is inversely related to performance
on the Generate task, and positively related to performance on the Choose task.
Relative outdegree of the commander is positively associated with performance
on the Negotiate task, while cyclicality is positively related to performance on
the Execute task. For task hindrance ties, no network statistics were significantly
related to performance on the Generate task. However, hindrance density was
positively related to Choose and Execute task performance. Finally, the com-
mander’s relative indegree is positively related to Negotiate task performance.
For leadership ties, closeness centralization is inversely related to performance
on the Generate task, but positively related to performance on the Choose task.
Leadership density is positively related to performance on the Negotiate task,
whereas leadership two-paths are positively associated with performance on the
Execute task. For followership ties, the relative indegree of the commander is
inversely related to performance on the Generate, Negotiate, and Execute tasks,
while followership density is positively related to Choose task performance.

5 Discussion

These findings illustrate how STERGM can be used to account for endogene-
ity due to time when correlating network statistics with an exogenous network
level outcome variable. This approach considers the association between network
properties and team performance by decomposing the network into individual
ties to be modeled. The STERGM-based sampling from the null distribution
controls for complex interdependencies between ties (e.g. reciprocity, closure, or
tendency of ties to persist over time). We model the network statistic not as a
single continuous variable, but as a consequence of a number of discrete ties that
have complex interdependencies with one another. STERGM therefore provides
a flexible framework to control for various types of interdependencies that have
been well-established as occurring across many real-world social networks.

We apply simulation from the null distribution to answer the question: Which
network patterns predict team performance? The results suggest elements of clo-
sure, centralization, and subgrouping along different relations affect performance.
Additionally, we observed multiple cases where a structure that benefited one
type of performance undermined another. Further work is needed to discover the
underlying social dynamics linking networks to team performance.
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Correlations on small sample sizes, such as ours, are difficult to interpret
because of the potential for spurious findings. The approach we employ for gen-
erating an empirical p-value, which takes into account temporal and other struc-
tural dynamics, provides a means for understanding the probability of finding
such an effect. In doing so, it serves as a tool to help interpret effects when
working with a moderate to small sample of networks.

Though we demonstrate a tool for statistical testing on small network sam-
ples, it has a number of limitations. First, the method needs to be compared
to existing multilevel techniques which also account for temporal endogeneity
[2,11,16]. Second, this approach needs to be explored as it applies to smaller
or larger samples. How few measurements would merit this approach, and how
many measurements could it be usefully applied to? Simulation studies could
help explore these questions.
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