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Abstract 
 
We introduce and describe the Patent Similarity Dataset, comprising vector space model-based 
similarity scores for United States utility patents. The dataset provides approximately 640 
million pre-calculated similarity scores, as well as the code and computed vectors required to 
calculate further pairwise similarities. In addition to the raw data, we introduce measures that 
leverage patent similarity to provide insight into innovation and intellectual property law issues 
of interest to both scholars and policymakers. Code is provided in accompanying scripts to assist 
researchers in obtaining the dataset, joining it with other available patent data, and using it in 
their research. 
 
I. INTRODUCTION & OVERVIEW 
 

For decades, empirical research on patent law and innovation has benefited from access to 
increasingly high-quality patent datasets. Scholars have used these datasets to study innovation 
in a wide variety of contexts at the national-level,1 firm-level,2 team-level,3 and individual-level.4 
In these studies, patent data have served a wide variety of purposes.5 For example, citations have 
been used as a proxy for knowledge inputs or measure of a patent’s value,6 patents themselves 
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1 See e.g., Raffaele Paci et al., International Patenting and National Technological Specialization, 17 
TECHNOVATION 25 (1997). 
2 See e.g., Michele Grimaldi et al., The Patent Portfolio Value Analysis: A New Framework to Leverage Patent 
Information for Strategic Technology Planning, 94 TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE 286 
(2015). 
3 See e.g., Margherita Balconi et al., Networks of Inventors and the Role of Academia: An Exploration of Italian 
Patent Data, 33 RESEARCH POLICY 127 (2004). 
4 See e.g., Martin G. Moehrle et al., Patent-Based Inventor Profiles as a Basis for Human Resource Decisions in 
Research and Development, 35 R&D MANAGEMENT 513 (2005). 
5 For a review of patent data as an economic indicator see: Zvi Griliches, Patent Statistics as Economic Indicators: 
A Survey, in R&D AND PRODUCTIVITY 287 (University of Chicago Press 1998); Sadao Nagaoka et al., Patent 
Statistics as an Innovation Indicator, in 2 HANDBOOK OF THE ECONOMICS OF INNOVATION 1083 (Bronwyn H. Hall 
and Nathan Rosenberg eds., Handbook of the Economics of Innovation, Volume 2, North-Holland 2010). 
6 See Manuel Trajtenberg, A Penny for Your Quotes: Patent Citations and the Value of Innovations, THE RAND 
JOURNAL OF ECONOMICS 172 (1990). 
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have been used as proxy measures for innovation more generally,7 and the structure of the prior 
art citation network has been used to infer the existence of thickets of intellectual property 
rights.8   

This project engages with the tradition of providing patent-related data that can enrich future 
research on patent law and innovation. We begin by briefly reviewing the state of available 
patent data, and the research that relies on it. We subsequently introduce the patent similarity 
dataset, which uses a vector space model to compute pairwise distances between a large number 
of patents. After introducing vector space models generally, and explaining how the patent 
similarity dataset was created, this paper’s final section goes on to describe the patent similarity 
dataset’s qualities and demonstrate how it can be used to generate a wide variety of metrics that 
provide new perspective on patent law and innovation.  
 
A. The Growth in Patent Data Availability, and Patent-Data-Driven Research 
 

One of the functions of patent law is to incentivize the disclosure of information relating to 
innovation.9 As a result of this, the patent system generates a large amount of data, much of 
which is publicly available.10 For decades now, researchers have been drawing on this 
increasingly large body of available patent data to help better understand innovation, science, 
and intellectual property law. Because the universe of patent data is quite large and data is 
available in varying formats, many of these projects require substantial data cleaning and 
preparation work. And so, researchers will often publish their datasets both to ensure that their 
efforts are put to wide use, and to enable others to replicate or potentially improve upon their 
analyses. 

At its most basic level, “patent data” refers to the data disclosed by the patent system. 
Traditionally, this has included the metadata on the first page of granted patents which details 
things such as the title of the invention, the patent number, the technical classifications assigned 
to the invention, and inventor and assignee names. In more recent years, as dataset size has 
become less of a limiting factor for researchers, patent datasets have offered increasing levels of 
detail. For instance, the NBER patent citation data is a well-known and widely used patent 
dataset. Since its publication in 2001, the patent citation data it provides has enabled a wide 
variety of innovation and IP metrics that have been used in thousands of academic articles across 
a wide variety of disciplines.11 

Many other patent datasets have been created in recent decades, including those arising as a 
result of improved data sharing by the USPTO as well as those created by researchers interested 
in questions about patent law and policy. For instance, statutory changes at the turn of the 
century led to the publication of patent applications and the resulting access to patent prosecution 

 
7 Daron Acemoglu et al., Innovation Network, 113 PNAS 11483 (2016). 
8 Georg von Graevenitz et al., How to Measure Patent Thickets—A Novel Approach, 111 ECONOMICS LETTERS 6 
(2011). 
9 Jeanne C. Fromer, Patent Disclosure, 94 IOWA L. REV. 539 (2008–2009). 
10 Indeed, the Patent Act requires that the PTO make available patent data available. 35 U.S.C § 41(i). For an 
overview of IP data, see David L. Schwartz and Ted Sichelman, Data Sources on Patents, Copyrights, Trademarks, 
and Other Intellectual Property, in RESEARCH HANDBOOK ON THE ECONOMICS OF INTELLECTUAL PROPERTY LAW 
(Edward Elgar Publishing 2019). 
11 Bronwyn H. Hall et al., The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools 
(National Bureau of Economic Research 2001). 
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data—a new type of patent data that was previously difficult to access.12 In more recent years, 
the USPTO Office of the Chief Economist (OCE) has produced and disseminated a growing 
body of patent data.13 Many of these initiatives build upon or complement the work of 
researchers outside the patent office who have added value to patent data by cleaning and 
processing publicly available patent data, such as efforts to disambiguate inventors allowing 
more nuanced analyses at the inventor or team-level.14  

In addition to datasets on patents themselves, the growth in patent-related data has also 
included data on patents in the legal system. For instance, Cotropia, Kesan, and Schwartz have 
created and shared a dataset on the role patent assertion entities play in patent litigation.15 
Similarly, the OCE has used publicly-available federal court data to assemble and share a patent 
litigation dataset,16 and the Stanford Non-Practicing Entity (NPE) Litigation Database collates 
and shares data on patent litigation, with a special focus on the types of entity—e.g. practicing, 
or non-practicing—involved in the suit.17  

The flourishing of available patent data has been accompanied by a commensurate 
flourishing of research utilizing that data. For instance, researchers have used patent datasets to 
infer patent value by proxies such as forward citation18 or family size,19 and to extrapolate these 
invention value measures to firm market value.20 Patent data has also been used to identify patent 
thickets, with a variety of approaches such as using inter-firm citations to infer blocking rights,21 
or by examining citation network density.22  

In addition to its use for assessing innovation at the patent or firm level, patent data has also 
helped shed light on the scientific and research processes more generally. This research—
sometimes referred to as the science of science, or when focused on team processes as the 
science of team science23—has used patent data to better understand both research inputs and 
outputs. For example, research has explored innovation inputs by drawing on patent 
classification data to explore how researchers engage in knowledge search and recombination,24 

 
12 See 35 U.S.C § 122. See also, Christopher Anthony Cotropia and David L. Schwartz, The Hidden Value of 
Abandoned Applications to the Patent System, SSRN Scholarly Paper ID 3465737 (Social Science Research 
Network), Aug. 30, 2019. 
13 https://www.uspto.gov/learning-and-resources/ip-policy/economic-research/research-datasets 
14 Guan-Cheng Li et al., Disambiguation and Co-Authorship Networks of the U.S. Patent Inventor Database (1975–
2010), 43 RESEARCH POLICY 941 (2014). 
15 Christopher A. Cotropia et al., Unpacking Patent Assertion Entities (PAEs), 99 MINN. L. REV. 649 (2014–2015). 
16 Alan C. Marco et al., Patent Litigation Data from US District Court Electronic Records (1963-2015), SSRN 
Scholarly Paper ID 2942295 (Social Science Research Network), Mar. 1, 2017. 
17 Welcome to the Stanford NPE Litigation Database | NPE Litigation Database, https://npe.law.stanford.edu/. 
18 Trajtenberg, supra note 8; Dietmar Harhoff et al., Citation Frequency and the Value of Patented Inventions, 81 
REVIEW OF ECONOMICS AND STATISTICS 511 (1999). 
19 Dietmar Harhoff et al., Citations, Family Size, Opposition and the Value of Patent Rights, 32 RESEARCH POLICY 
1343 (2003); Dominique Guellec and Bruno van Pottelsberghe de la Potterie, Applications, Grants and the Value of 
Patent, 69 ECONOMICS LETTERS 109 (2000). 
20 Bronwyn H. Hall et al., Market Value and Patent Citations, RAND JOURNAL OF ECONOMICS 16 (2005). 
21 von Graevenitz et al., supra note 10. 
22 Gavin Clarkson, Patent Informatics for Patent Thicket Detection: A Network Analytic Approach for Measuring 
the Density of Patent Space, RESEARCHGATE (2005). 
23 Katy Börner et al., A Multi-Level Systems Perspective for the Science of Team Science, 2 SCIENCE 
TRANSLATIONAL MEDICINE 1 (American Association for the Advancement of Science, American Association for the 
Advancement of Science 2010). 
24 Lee Fleming and Olav Sorenson, Technology as a Complex Adaptive System: Evidence from Patent Data, 30 
RESEARCH POLICY 1019 (2001); Lee Fleming and Olav Sorenson, Science as a Map in Technological Search, 25 
STRATEGIC MANAGEMENT JOURNAL 909 (2004). 
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and to better understand changes in the degree of interdisciplinarity in granted patents.25 In 
addition to data about the contents of patents or the claimed invention, the information that 
patent data offers on inventors and where they work has furthered research on collaboration,26 
knowledge transfer,27 and the effects of non-compete agreements on the labor market.28 

Patent data-driven research has also extended to examine the administration of patent 
systems. For instance, Frakes and Wasserman have used patent prosecution data to demonstrate 
systematic challenges facing patent examiners that contribute to the grant of low quality 
patents.29 Others have used patent prosecution data to illustrate how changes in the types of 
innovation might challenge examiners,30 or to propose methods to improve the examination 
process.31 

The above is by no means intended to be an exhaustive review of the research drawing on 
patent data. Indeed, because of the broad utility of patent data, any such review would be beyond 
the scope of a single article. Rather, the intent here is to highlight how useful patent data has 
been to researchers from a wide variety of disciplines including law, economics, sociology, 
management science, and more. This previous work has benefitted from efforts by other 
researchers and by patent offices and NGOs, to clean and curate increasingly detailed patent 
data.  

Much of the past work focused on cleaning and sharing patent data is emblematic of the 
general rise in “metaknowledge” research.32 As electronic publishing and indexing have 
increased in scope, researchers have used their increased access to metadata and improved 
analytic methods and power to improve our understanding of the scientific and creative 
processes. However, metadata studies are necessarily imprecise, making inferences about 
substance based on abstracted data. The metadata nature of many existing patent datasets has led 
researchers to rely on these coarse data when attempting to measure quite fine-grained concepts. 
For instance, analyses using patent citations tend to treat those citations as binary markers of 
influence or relationship. That is to say, the citation either exists or does not exist, leaving little 
room for qualitative distinction between different types of citations. Similarly, research using 
patent categorization to infer anything about the substance of the claimed invention necessarily 
treats all patents with the same classification as identical to one another. In reality there is 

 
25 Xiaolin Shi et al., The Impact of Boundary Spanning Scholarly Publications and Patents, 4 PLOS ONE e6547 
(2009). 
26 Stefan Wuchty et al., The Increasing Dominance of Teams in Production of Knowledge, 316 SCIENCE 1036 
(2007). 
27 Adam B. Jaffe et al., Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations, 108 
THE QUARTERLY JOURNAL OF ECONOMICS 577 (1993). 
28 Matt Marx et al., Mobility, Skills, and the Michigan Non-Compete Experiment, 55 MANAGEMENT SCIENCE 875 
(2009); Matt Marx et al., Regional Disadvantage? Employee Non-Compete Agreements and Brain Drain, 44 
RESEARCH POLICY 394 (2015). 
29 Michael Frakes and Melissa F. Wasserman, Does the U.S. Patent & Trademark Office Grant Too Many Bad 
Patents?: Evidence from a Quasi-Experiment, STANFORD UNIVERSITY LAW REVIEW (2015); Michael D. Frakes and 
Melissa F. Wasserman, Is the Time Allocated to Review Patent Applications Inducing Examiners to Grant Invalid 
Patents? Evidence from Microlevel Application Data, 99 THE REVIEW OF ECONOMICS AND STATISTICS 550 (2016). 
30 Ryan Whalen, Boundary Spanning Innovation and the Patent System: Interdisciplinary Challenges for a 
Specialized Examination System, 47 RESEARCH POLICY 1334 (2018). 
31 Charles deGrazia et al., Shorter Patent Pendency Without Sacrificing Quality: The Use of Examiner’s 
Amendments at the USPTO, USPTO Economic Working Paper No. 2019-03 (Social Science Research Network), 
Jun. 1, 2019. 
32 James A. Evans and Jacob G. Foster, Metaknowledge, 331 SCIENCE 721 (2011). 
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substantial variation both in types of prior art citations and within patent categories. Metadata 
elides much of that variation and in the process limits the capacity of the dataset.  

Researchers have historically relied on metadata-based measures for a variety of reasons 
including convenience, tractability, and limitations on access to more detailed data. However, 
improvements in data access, computational capacity, and natural language processing 
techniques mean that we can now engage more deeply with the content and substance of patent 
documents and need not be limited to metadata only when assembling research datasets. One of 
the clearest ways patent document contents can contribute to more nuanced research data is by 
using the text of the document to assess its content and determine how similar or dissimilar 
patents are from one another.  

Patent similarity data has proved useful in a variety of research contexts. There is a relatively 
large body of work that has used patent similarity scores in the context of engineering and 
computer science research. For instance, recent work used patent vector space models to improve 
patent information retrieval33 and recommender systems.34 Other recent research has used patent 
similarity metrics to help with classification problems such as identifying standard essential 
patents,35 or those patents involved in thickets.36 Research using patent similarity metrics has 
also begun to appear more frequently in legal research, including work proposing similarity 
metrics as a supplementary measure of patent value,37 and work that explores changes in 
workload at the USPTO.38 Despite its growing popularity, the application of patent similarity 
scores in empirical research faces a number of challenges, including access to the computational 
resources to calculate the scores, operationalization of relevant metrics, and knowledge of how to 
apply them. The Patent Similarity Dataset shared here seeks to help reduce these barriers to entry 
by sharing similarity data, the code necessary to reproduce them, and demonstrations of 
innovation measures that can be derived from the dataset. 
 
II. THE DATASET 
 

The patent similarity dataset provides document-level similarity measures for granted 
patents. These similarity scores provide insight into the degree of similarity in the linguistic 
content of patent pairs. Because patent text is largely comprised of a description of the claimed 
technology and specific claim language, patent similarity scores can be thought of as providing 
insight into the similarity of the inventions that are claimed in the documents. Once computed, 
these scores can be used to assess innovation and patent policy in a variety of novel ways. For 
instance, weighting prior art citations based on the similarity between the citing and cited 

 
33 André Rattinger et al., Semantic and Topological Graphs for Patent Retrieval, 2019 SIXTH INTERNATIONAL 
CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS) 175 (Oct. 2019). 
34 Hyoung Jun Kim et al., Recommendation of Startups as Technology Cooperation Candidates from the 
Perspectives of Similarity and Potential: A Deep Learning Approach, 130 DECISION SUPPORT SYSTEMS 113229 
(2020). 
35 Sven Wittfoth, Identification of Probable Standard Essential Patents (SEPs) Based on Semantic Analysis of 
Patent Claims, 2019 PORTLAND INTERNATIONAL CONFERENCE ON MANAGEMENT OF ENGINEERING AND 
TECHNOLOGY (PICMET) 1 (Aug. 2019). 
36 Mateusz Gątkowski et al., Semantically-Based Patent Thicket Identification, 49 RESEARCH POLICY 103925 
(2020). 
37 Jonathan H. Ashtor, Investigating Cohort Similarity as an Ex Ante Alternative to Patent Forward Citations, 16 
JOURNAL OF EMPIRICAL LEGAL STUDIES 848 (2019). 
38 Whalen, supra note 32; Ryan Whalen, Complex Innovation and the Patent Office, 17 CHICAGO–KENT JOURNAL 
OF INTELLECTUAL PROPERTY 226 (2018). 
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documents, allows for more nuanced measures of innovation input and patent impact. Similarly, 
one can use these scores to identify different types of innovation, such as that emerging from a 
single disciplinary field or those that span diverse areas of expertise.39 These and other 
applications of patent similarity data will be demonstrated below after introducing vector-based 
models and describing how the dataset was assembled.  

 
A. Vector Space Models 
 
Vector space models are so-called because they represent documents with a numerical 

vector. By representing documents as n-dimensional vectors, one can use vector and matrix 
analyses to gain insight into their relationships with one another. Corpora vector spaces are often 
represented as a matrix, with a row for each document, and columns representing the relevant 
dimensions. There are a wide variety of methods to identify and measure model dimensions, and 
as natural language processing (NLP) methods develop, new methods are introduced with some 
regularity.  

Perhaps the simplest method to situate documents in a vector space is to rely on vocabulary 
terms, representing each unique word with a column in the matrix. Doing so generates a matrix 
with n rows, and m columns, where n is the number of documents in the corpus and m is the 
number of unique terms in the corpus. Cell values can represent the number of times a term 
appears in each document. With this matrix in hand, one can quite simply compute vocabulary 
similarity measures by taking the cosine of the rows (i.e. vectors) for document pairs. A 
somewhat more nuanced, yet still relatively simple, vocabulary-based approach reweights terms 
based on the degree to which the term helps distinguish the document from other documents in 
the corpus. This term frequency-inverse document frequency (TF-IDF) measure takes into 
account the number of times each term appears in a document and the number of documents it 
appears in across the corpus. By re-weighting term scores, TF-IDF helps strengthen the 
vocabulary signal and leads to somewhat better similarity scores. 

However, these simple vocabulary-based measures have a number of weaknesses. Because 
each unique term in the corpus is represented as a matrix column, the matrix is very sparse. 
Perhaps more importantly, these methods do not account for varied relationships between words. 
Each unique term is treated as its own dimension, when in reality some terms are closely related 
to one another (e.g. ‘car’ and ‘automobile’) while others are not (e.g. ‘finance’ and ‘calcium’). 
More nuanced models have been developed to address these weaknesses. They include methods 
such as latent semantic indexing (LSI), which applies singular value decomposition on the 
original document-term matrix, generating a lower-rank n-dimensional document-concept matrix 
that partially addresses term relatedness;40 and Latent Dirichlet Allocation (LDA) a probabilistic 
model that assigns weighted probabilities that terms relate to topics or dimensions.41 

Recent developments in machine learning techniques have led to further vector space model 
developments, including so-called “deep learning” approaches to vector space modeling. To 
construct the patent distance dataset we use Doc2Vec—one of these more recent neural network 

 
39 Whalen, supra note 32. 
40 Scott C. Deerwester et al., Indexing by Latent Semantic Analysis, 41 JASIS 391 (1990). 
41 David M. Blei et al., Latent Dirichlet Allocation, 3 JOURNAL OF MACHINE LEARNING RESEARCH 993 (2003). 
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based models—because of its wide adoption and performance advantages,42 and because recent 
research suggests it performs well in identifying similar inventions.43 Doc2Vec is an extension of 
the popular Word2Vec model, which represents words as embeddings (i.e. vectors) that enable 
sophisticated natural language processing tasks.44 Using Doc2Vec, we can represent documents 
as vectors, enabling comparisons between documents.45 

 
B. Creating the Dataset 
 

To create a Doc2Vec model from a corpus of documents, one first needs the input corpus. In 
the case of patent documents, there are numerous sources of the full text of granted patents. For 
the purpose of generating the patent similarity dataset, we drew on the data provided by the 
USPTO’s Office of the Chief Economist (OCE). The OCE provides regular database dumps 
containing, amongst other patent data, the full text of patent description and claims sections.46 
This dataset covers all patents granted between 1976 and the end of 2019.  

After downloading this data, we use the text of the utility patent documents47—comprising 
the description and independent claims text—as the input data for the Doc2Vec model.48 The 
model estimates a 300-dimension vector representation for each input document. These vectors 
or “embeddings” can be thought of as points in multidimensional semantic space that represent 
the contents of each patent document. 

 
42 Michal Campr and Karel Ježek, Comparing Semantic Models for Evaluating Automatic Document 
Summarization, TEXT, SPEECH, AND DIALOGUE 252 (Pavel Král and Václav Matoušek eds., Lecture Notes in 
Computer Science, Springer International Publishing 2015). 
43 Lea Helmers et al., Automating the Search for a Patent’s Prior Art with a Full Text Similarity Search, 14 PLOS 
ONE (2019). 
44 Quoc V. Le and Tomas Mikolov, Distributed Representations of Sentences and Documents, ARXIV:1405.4053 
[CS] (May 16, 2014). 
45 Word2Vec produces word vectors by using a three-layer neural network featuring an input layer, a hidden layer, 
and an output layer. There are different algorithmic applications of Word2Vec, but in each the essential function of 
the hidden layer is to predict words based on their context. The training process tunes the hidden layer to produce 
the most accurate predictions, based on the input layer. Doc2Vec extends this approach by adding additional input 
nodes that represent the documents. Thus, when the Doc2Vec training is complete one has both the word 
embeddings, as well as document embeddings. The similarity scores featured in the Patent Similarity Dataset rely on 
these document embeddings. 
46 In addition to the similarity scores, this project also shares a Python script that automates the downloading and 
database assembly process for those who wish to work with the OCE patent data. 
47 We exclude non-utility patents such as plant and design patents because they differ in many ways from utility 
patents, and including them in the model training may reduce the model’s accuracy. For the purpose of enabling 
longitudinal analysis, we also exclude reissued patents from the analyses below however their vectors can be 
calculated and included in results if researchers so desire. 
48 The model was computed using the Gensim Python library, using the distributed bag of words (DBOW) algorithm 
with 10 epochs. Radim Řehůřek and Petr Sojka, Software Framework for Topic Modelling with Large Corpora, 
PROCEEDINGS OF THE LREC 2010 WORKSHOP ON NEW CHALLENGES FOR NLP FRAMEWORKS 45 (ELRA Valletta, 
Malta May 2010). As in most vector space models, words are treated as “tokens” and thus separating text into words 
is a vital step of the process. For most patents doing so is straight forward. However, some inventions, such as those 
detailing chemical compounds, raise some challenges. For simplicity and consistency, we treated any whitespace 
separated strings as tokens or words. Thus, chemical formulae with no space between components will be treated as 
a single word, while ones with whitespace between components will be treated as multiple words. We use both the 
description and independent claims to help ensure that the important text discussing each invention is included in the 
model calculation. All patents require at least one independent claim, and indeed these claims are legally the most 
important part of the patent in describing its scope, so we include these. Meanwhile, the description field describes 
the invention in more general terms and contextualizes it, providing useful input for the model. 
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Once the model is computed, we use the patent embeddings to calculate a variety of cosine 
similarity scores: the similarities between all citing/cited patent pairs, and the similarities of the 
100-most similar patents to each patent in the dataset. These pre-calculated similarity scores are 
available for download, along with the Doc2Vec embedding vectors and precalculated model 
object that will enable further similarity score calculations for texts not used in the model 
generation (e.g. patent applications, or new patents not in the dataset). Interpreting vector space 
model similarity scores can be challenging. Research suggests that they generally agree with 
human readers’ similarity assessments,49 and we offer some validation techniques below and in 
the accompanying code notebooks to show that the similarity scores in the dataset track 
expectations, suggesting the metrics proposed below will be useful, especially when applied in 
the aggregate. Nonetheless, individual scores should be interpreted carefully.  

 
 
III. PATENT SIMILARITY DATA AND MEASURES 
 
Because patents are of interest to scholars from a wide-variety of disciplines with a wide-variety 
of interests, the patent similarity dataset has a commensurately wide-variety of potential 
applications. It can be used to provide insight at the individual patent level—e.g. measures of 
impact or interdisciplinarity within a specific invention—at the inventor level—e.g. the degree to 
which an inventor produces inventions that are similar to one another—and even at the firm or 
location level—e.g. the degree of variation over time in a firm’s patented invention output.  
 
A. Comparing patents by classification 
 

As an initial point of inquiry, one might wish to determine the degree to which semantic 
similarity tracks with existing measures used to infer a patent’s contents or topic. Absent access 
to data that leverages patent text, metadata provides one of the best ways to infer what type of 
technology a patent claims. The PTO assigns classifications to each application as it is submitted. 
These classifications both determine which art unit will assess the application and help guide the 
prior art search.50 Previous research has leveraged these classifications to infer the topical 
substance of the claimed technology.51  

Figure 1 demonstrates how the semantic similarity data we share here tracks with this 
classification data. Here we see that patents paired at random are the least similar to one another, 
while those that are matched based on their cooperative patent classification (CPC) section are 
somewhat more similar to one another, those matched on class yet more similar, and those 
matched on subclass most similar.52 This corresponds with what one would expect, as moving 
down the CPC classification tree successively narrows the topics covered and we would expect 

 
49 See Peter D. Turney and Patrick Pantel, From Frequency to Meaning: Vector Space Models of Semantics, 37 
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH 141 (2010). 
50 See Cooperative Patent Classification, http://www.cooperativepatentclassification.org (last visited May 30, 2020). 
51 See e.g., Lee Fleming, Recombinant Uncertainty in Technological Search, 47 MANAGEMENT SCIENCE 117 (2001); 
Shi et al., supra note 27. 
52 T-Tests for mean equivalence show that each of these differences is statistically significant at the  p < 0.0001 
level. 
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patents in narrower classes to have more in common.53 At the same time, we also see substantial 
variation within levels, which is also to be expected when comparing patents at random, even 
when they are drawn from the same CPC subclass. This accentuates one of the advantages of 
using the text over a metadata-based approach such as using classification to infer content. 
Classification data elides all the intra-category differences that exist, whereas a full text approach 
can help capture more nuanced relationships. 

 
Figure 1: Patent Similarity by Classification Level 

 
Note: Showing similarity distributions for 1000 patent pairs matched at random, or by CPC 

section, class, or subclass. 
 
B. Citation-based metrics 
 

There is a large body of research using patent citations as components for a variety of 
measurements. These include measures of invention impact or value, innovation inputs, and 
knowledge flows. However, as discussed above, prior art citations are traditionally treated as 
binary constructs—they either exist, or they do not. In reality, citations vary along a wide range 
of dimensions—one of which is the degree to which the cited and citing document are similar to 
one another. For instance, when considering citations as evidence of an invention’s impact, the 
similarity of the citing patent provides insight the type of impact the invention had. Citations 
from proximate inventions suggest that the invention had influence on the development of its 

 
53 For example, consider a patent classified into subclass A45B. It fits within section ‘A’ which broadly covers 
“Human Necessities” class ‘A45’ which covers “Hand or Travelling Articles” and subclass ‘A45B’ which covers 
“Walking sticks; umbrellas; ladies’ or like fans.” 
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own technical area, whereas citations from semantically dissimilar inventions suggest it had 
more wide-ranging impact. The patent similarity dataset allows one to use these similarity 
variations to develop new and useful metrics.  

Simply comparing the distribution of similarities between citing/cited patents, and random 
patent pairs demonstrates that, as one would expect, prior art citations tend to be to other patents 
that are relatively similar to the citing patent. The average similarity between non-citing patent 
pairs is a relatively low 0.09 with a relatively tight distribution. Citing pairs on the other hand 
tend to be more similar to one another at 0.26.  

 
Figure 2: Similarity Between Citing Patent Pairs and Random Patent Pairs 

 
We can also see that over time, the average citation similarity has decreased. Figure 3 plots the 
average backwards citation similarity—i.e. the similarity between a citing patent granted in year 
X and its cited prior art—showing a trend towards citing more-and-more dissimilar prior art over 
time. 
 

Figure 3: Mean Citation Similarity Over Time 



 11 

 
 

Note: Showing the average pairwise similarity across all prior art citations, averaged by year. 
 

There are many ways citation similarity data can be leveraged to provide insight into knowledge 
inputs and invention impact. Figure 4 describes four such measures in visual terms, with the 
central patent document representing the focal patent, the one-directional arrows showing 
backwards and forward citation relationships, and the bi-directional arrows representing each of 
four proposed measures: (a) prior art proximity; (b) prior art homogeneity; (c) impact proximity; 
and (d) impact homogeneity. Each of these is described below and operationalized in the 
accompanying data analysis scripts. To demonstrate the measures, we sample 10,000 random 
patents from each year. The sample for backward citation-based metrics begins in 1986 and 
extends to 2019, while the forward citation-based sample extends from 1976 to 2009. To 
preserve comparability across patents invented at different times, we limit forward citation 
analyses to citations occurring within 10 years of grant. 
 

Figure 4: Citation Based Similarity Measures 
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Note: a = prior art proximity; b = prior art homogeneity; c = impact proximity; d = impact 
homogeneity. Uni-directional arrows represent citations, bi-directional arrows represent 

the relationships each metric is based on. 

 

1. Prior art proximity  
Prior art proximity measures the degree to which a patent cites prior art that is similar or 

dissimilar to itself. To do so it measures the degree of similarity between the citing patent and its 
backward cited references. To calculate a patent’s prior art proximity score we first measure the 
cosine similarity between it and each of its cited references. We then take the minimum of this set 
of scores.54 Defined in this manner, a high knowledge proximity score means that a patent cites 
predominantly proximate and similar knowledge. On the other hand, a low knowledge translation 
score occurs when a patent draws on at least one piece very dissimilar of knowledge. Figure 4 
below demonstrates this measure on a random sample of patents, showing a general decrease in 
knowledge proximity over time, but a levelling-out in recent years. 

 
Figure 5: Prior Art Proximity 

 
54 Here we operationalize these citation-based metrics by using the minimum similarity. Depending on the 
substantive questions of interest, one might prefer to use different statistics (e.g. mean, median). We therefore enable 
this in the accompanying code. 
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Note: Showing the yearly average minimum similarity between patents and their cited prior 
art (backward citations). The downward sloping curve shows that patents tend to cite to 
inventions that are increasingly distant from themselves. 

2. Prior art homogeneity 
Prior art homogeneity measures the degree to which a patent cites to areas of knowledge space 

that are distant from one another. Here, the comparison is between the co-cited prior art rather than 
between the focal invention and its cited prior art. To calculate prior art homogeneity, we first 
measure the pairwise cosine similarity between each co-cited pair of patents. The minimum of 
these scores represents the greatest degree of dissimilarity between knowledge areas that are cited 
by the focal patent. Inventions which bring together highly dissimilar areas of knowledge can be 
thought of as “boundary spanning” inventions, that are qualitatively different than other types of 
inventions. Research suggests that these types of inventions are more challenging for the PTO at 
the examination stage.55 Figure 5 below shows a general trend towards a decrease in the similarity 
between the various prior art cited by individual patents. 

 
Figure 6: Prior Art Homogeneity 

 
55 Whalen, supra note 32. 
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Note: Showing the yearly average minimum similarity between co-cited prior art. The 
downward sloping curve shows that patents tend to cite to multiple different technological 
areas that are increasingly diverse from one another. 

 

3. Impact proximity 
Impact proximity measures the degree to which a patent is cited by future patents that are similar 

or dissimilar to itself. A patent with a high impact proximity score has been cited as prior art by 
later patents that are similar to it—that is to say, its impact has been on proximate areas of the 
knowledge space—whereas a low impact proximity score demonstrate that the patent was cited by 
later patents that feature very different content than the original. To calculate impact proximity, 
we first calculate the pairwise similarity between a cited patent and all of the citing references that 
are granted within 10 years of the cited patent. We then take the minimum of this set of scores, 
which reflects the single most dissimilar technical area that the invention is cited by. Figure 6 
shows a general decrease in impact proximity over time, suggesting that patents have been cited 
by increasingly dissimilar prior art. 

 
Figure 7: Impact Proximity 
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Note: Showing the yearly average minimum similarity between patents and their citing prior 
art (forward citations). The downward sloping curve shows that patents tend to be cited by 
increasingly distant technology fields. 

 

4. Impact homogeneity 
Impact homogeneity measures the degree to which a patent is related to a diverse set of 

future patents through its forward citations. In the context of patents, a published patent with a 
high impact homogeneity score has been cited as prior art by inventions in a relatively narrowly 
localized area of the knowledge space, whereas a patent with a low impact homogeneity score 
has been cited by patents in diverse areas of the knowledge space. To calculate impact 
homogeneity, we first calculate the pairwise similarity scores for all co-citing references. The 
minimum amongst these scores measures the greatest dissimilarity between citing references and 
is taken as the homogeneity score, although the mean can be informative as well. Figure 8 shows 
a decrease in impact homogeneity, suggesting that over time patents have been cited by pairs of 
subsequent art that are increasingly dissimilar from one another. 
 

Figure 8: Impact Homogeneity 
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Note: Showing the patent-wise average minimum similarity between co-citing prior art. The 
downward sloping curve shows that patents tend to be cited by multiple different 
technological areas that are increasingly diverse from one another. 

 

The four similarity-weighted citation metrics proposed above can help provide insight on 
patents and innovation that traditional binary citation measures are unable to capture. They show 
that patents are increasingly citing to less-and-less similar prior art (prior art proximity), that the 
prior art cited is itself increasingly diverse (prior art homogeneity), that inventions are 
progressively influencing fields that are more different from their own (impact proximity) and 
that they are also influencing fields that are more diverse (impact homogeneity). Some of this 
may be influenced by the overall increasing diversity of technologies. As more inventions are 
claimed, the “technology space” increases in size. All else being equal, this leaves any two 
patents granted today to be less similar to one another than two patents granted 20 years ago. 
Indeed, this can be measured and controlled for.56 Depending on one’s substantive question of 
interest, controlling for changes in the size of the “technology space” may make sense. That said, 
the change over time is relatively small in scale compared to the changes we see in the above 
citation-based measures. 

 
Figure 9: Increasing Invention Diversity 

 
56 See the accompanying code notebook for a demonstration of how to control for this. 
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Note: Showing the average pairwise similarity for 10,000 random pairs of patents granted in 

the same year. The decrease in similarity reflects the increasing diversity of patented inventions 
over time. 

 
 
 
 In addition to this, one might also be interested in using citation similarity data to provide 

insight into the patent application and examination process. Previous research has suggested that 
examiners and applicants may focus on different types of prior art when adding citations to 
patent applications,57 and that examiners may find the prior art that they identify more useful in 
determining patentability.58 Patent similarity data can provide new perspective on these issues. 
One simple way to do so, is simply to compare the similarity distributions for citations added by 
applicants and examiners. Doing so reveals that examiners tend to cite to more-similar prior art 
(see Figure 10). This could perhaps be because examiners are better at finding prior art, or 
alternately because applicants strategically exclude citations to more similar inventions. 
Regardless of why these citation tendencies may differ, the patent similarity dataset makes 
identifying and measuring them a straightforward process. 

 
Figure 10: Examiner vs. Application Citations 

 
57 Juan Alcácer et al., Applicant and Examiner Citations in U.S. Patents: An Overview and Analysis, 38 RESEARCH 
POLICY 415 (2009). 
58 Christopher Anthony Cotropia et al., Do Applicant Patent Citations Matter?, 44 RESEARCH POLICY 844 (2013). 
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Note: Compares the similarity distribution for 50,000 randomly chosen examiner citations vs 

50,000 randomly chosen applicant citations. The difference in means is statistically significant 
(T=56.87, p < 0.0001). 

 
C. Patent Neighbors 

The patent similarity dataset also includes data on each patent’s 100 nearest neighbors. 
These are the 100 patents from the dataset that are most similar to the focal patent, and their 
accompanying similarity scores. These data can be used for a wide variety of analyses, including 
those that provide perspective on how crowded an invention’s “neighborhood” is.  

As an example, consider the neighborhoods of both litigated and non-litigated patents. To 
examine whether they differ from one another, we begin with the litigated patent data,59 and 
identify the similarity between each litigated patent and its nearest neighbor. We then compare 
these similarity scores with the similarity between non-litigated patents and their nearest 
neighbors. Having a very similar nearest neighbor, suggests that the patent in question is in a 
more ‘crowded’ intellectual property space, with perhaps many other competing, blocking, or 
related patents, whereas having only more distant neighbors suggests an invention is relatively 
unique. By comparing the distributions of the nearest neighbor similarities for both litigated and 
non-litigated patents, we can see that, on average, litigated patents tend to have much more 
similar nearest neighbors than their non-litigated counterparts, and a somewhat bimodal 
distribution of these scores. 

 
Figure 11: Nearest Similarity – Litigated vs. Non-litigated Patents 

 
59 David L. Schwartz et al., USPTO Patent Number and Case Code File Dataset Documentation, SSRN Scholarly 
Paper ID 3507607 (Social Science Research Network), Dec. 1, 2019. 
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Note: Showing the similarity distribution for the nearest neighbor similarity of patents that go on 

to be litigated and those for random patents. 
 

The patent similarity data demonstrations provided thus far have focused on patent citations 
and nearest neighbors, and largely on individual patents. However, patent similarity data can also 
provide new forms of insight when one shifts focus from individual inventions to things like 
inventors, teams, and firms.   

 
D. Inventor, team, and location-level analyses 
 

At the inventor-level, patent similarity data can be used to better understand a given 
inventor’s area of expertise. This can be done by first situating each of the inventor’s inventions 
within semantic space, and then calculating their pairwise similarity scores. Those scores can be 
used to create an “expertise network” that graphs the inventor’s inventions and the similarities 
between them. These expertise networks provide insight into the type of innovator an inventor is. 
An inventor with a tightly grouped body of patents, has historically invented in a relatively 
focused area of the knowledge space. Whereas, an inventor with significant distance between his 
or her inventions has worked in a more diverse set of areas.  

To demonstrate, compare the invention networks of four well-known technology company 
CEOs. We can see that Bill Gates’ inventions are on average less similar to one another than 
Mark Zuckerberg’s. Furthermore, he has a lower minimum similarity—suggesting that his two 
least similar inventions are less-closely related than Zuckerberg’s. All of this suggests that, at 
least according to the patent record, Bill Gates has invented in a wider variety of areas than Mark 
Zuckerberg. Jobs and Bezos are somewhere between the two, with average similarities higher 
than Gates but lower than Zuckerberg, and similarly low minimum similarities.  
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Figure 12: Intra-inventor-similarity networks  

 
 

Note: Nodes are patents on which the individual is listed as an inventor, they are linked 
together based on their pairwise semantic similarity, and then the minimum spanning tree 
of the network is shown. 

 
Focusing on the inventor level can also provide new perspective on teams of inventors. An 

inventor’s core area of expertise can be estimated by identifying the centroid of their invention 
network. To do so, we take their mean patent vector and locate it within the patent vector space. 
This location can be thought of as an inventor’s “average” invention, estimating the core of their 
expertise. Inventors can then be compared to one another, to reveal whether or not they have 
historically tended to work in similar or dissimilar technical areas. Teams consisting of members 
with similar expertise backgrounds will have high similarity scores between their member 
centroids, whereas teams with more diverse inventing backgrounds will have low similarity 
scores between their member centroids. We can visualize these results in a number of ways. For 
instance, again using the tech CEOs assessed above, we can compare pairwise similarity between 
inventors and visualize the resulting team network. 

 
Figure 13: Inter-inventor similarity network 
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Alternately, one might be interested in the average or distribution of pairwise similarity 

scores among team members. This too can be calculated with relative ease from the patent 
similarity dataset. To demonstrate, figure 14 below compares the team member similarity scores 
for the teams of inventors listed on two of Google’s Nest-thermostat related patents. We can see 
that the 8,757,507 patent was invented by individuals who had on average more similar inventing 
histories than those who invented the 9,256,230 patent.60 

 
Figure 14: Patent Team Similarity Distributions 

 
60 The average pairwise team member similarity on the ‘507 patent is 0.85, while that on the ‘230 patent is 0.78. 
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Note: Showing the intra-team similarity scores for inventors on two patents. 

 
Many team-level metrics that the patent similarity dataset enables could be similarly used on 

other groupings of inventors or inventions. For instance, one might be interested in the patent 
portfolios of firms or the similarities of inventors who work at those firms. Alternately, one 
might be curious about particular geographic locations, such as cities or states, and their 
inventing histories. Because it is easy to integrate with existing patent datasets, these sorts of 
firm or location-level analyses are also relatively straightforward to implement using the patent 
similarity dataset. For instance, one can quite easily measure the average pairwise similarity of 
inventions granted in one state (say California) and compare against another (say Louisiana). We 
can see that Californian patenting is somewhat more diverse, with lower intra-state similarity 
scores than Louisiana. 
 

Figure 15: California patent similarity vs. Louisiana patent similarity 
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Note: Comparing the similarity distribution for 10,000 randomly selected patent pairs with 

inventors addresses listing California, with 10,000 randomly selected Louisianan inventions. The 
difference in means is statistically significant (T=14.61, p < 0.0001). 

 
E. Other applications 

 
The above is meant to illustrate a few of the wide variety of ways that patent semantic 

similarity data can be applied to the study of innovation and intellectual property law. In addition 
to these demonstrated measures, there are many more ways in which researchers can apply these 
similarity scores. For instance, patent similarity data has the potential to provide insight into 
legal disputes by giving additional perspective on litigated patents. Alternately, the PTO’s patent 
examination process is replete with questions that may benefit from the potential insight that 
patent similarity data provides. One of this article’s co-authors has argued elsewhere that 
semantic similarity data may provide valuable insight in developing empirical patentability 
metrics.61 

Beyond providing insight into the administration of the patent system and enforcement of 
patent rights, patent similarity data can also provide additional perspectives on technological 
development more generally. Indeed, patent similarity is already used as a component of some 
patent landscaping techniques.62 Other research suggests that semantic similarity data can have 
utility in a wide range of applications including the identification of patent thickets,63 or 
estimation of a patent’s value at the time of grant.64 A publicly-available patent similarity dataset 

 
61 Laura G. Pedraza-Fariña and Ryan Whalen, A Network Theory of Patentability, 87 THE UNIVERSITY OF CHICAGO 
LAW REVIEW (2020). 
62 Aaron Abood and Dave Feltenberger, Automated Patent Landscaping, 26 ARTIF INTELL LAW 103 (2018). 
63 Gątkowski et al., supra note 38. 
64 Ashtor, supra note 39. 
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and accompanying code makes implementing or improving on these existing techniques easier 
for researchers. 
 

F. Obtaining the Patent Similarity Dataset 
 

In publishing the patent similarity dataset, we hope to facilitate its use by not only sharing 
and describing it, but by providing sample code that can be repurposed by researchers. By 
developing and operationalizing similarity-based metrics and providing the required code we 
hope to reduce the barrier to entry that many researchers face in applying natural language 
processing techniques to their own research. Thus, in addition to the publicly available data and 
description, we have provided an accompanying Python Jupyter notebook appendix that 
demonstrates how to use patent similarity data, and how to join it with other existing patent 
databases.65 

The patent similarity data includes the following files:66  
• Patent vectors—this contains the 300-dimension vectors for each patent in JSON 

format. 
• Citation similarity—this contains the cosine distance between all citing/cited pairs in 

the patent dataset. It is provided as a weighted edge list. 
• Most similar—this contains the patent numbers and similarity scores for the 100 

most-similar patents to each granted utility patent in JSON format. 
In addition to these files, we have also shared Python scripts that will download the public patent 
data provided by the COE, and convert them into a SQLite database, as well as scripts that will 
add the patent similarity data as tables to that database.67 Finally, we also share the saved 
Doc2Vec model, which can be used to calculate similarities for other patent pairs or arbitrary 
input texts, as well as scripts that can be used to re-compute the Doc2Vec model locally should 
users wish to alter the model parameters. 
 
V. CONCLUSION 
 
This paper has introduced the Patent Similarity Dataset, described its creation and structure, and 
demonstrated a variety of ways it can be used to produce novel insight of use to intellectual 
property and innovation researchers. It is our hope that by providing this data and related code 
we will make it more feasible for scholars to leverage advances in natural language processing in 
their own research. Combining this patent similarity data with other sources of patent data 
creates a powerful integrated database that enables researchers to move beyond metadata-based 
patent research and engage more deeply with patent content and the complex relationships 
between inventions.  
 

APPENDIX I – FILE DESCRIPTIONS 
Table 1: Dataset files and descriptions 
Filename Structure Description 

 
65 The notebook can be retrieved from: https://github.com/ryanwhalen/patent_similarity_data. 
66 The data files are available on the Zenodo data repository: https://zenodo.org/record/3552078 (DOI: 
10.5281/zenodo.3552078). 
67 The patent download script can be found here: https://github.com/ryanwhalen/patentsview_data_download. 
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vectors.json Two columns: 
  1. Patent Number 
  2. JSON list containing 300-
dimension document embedding. 
 

This file contains one 
row for each patent. 
Each row contains the 
patent_id and that 
patent’s doc2vec 
vector. The 
approximate 
uncompressed size is 
39 GB. 

most_sim.json Two columns: 
  1. Patent Number 
  2. JSON lists containing 100 
tuples, each with (patent_id, 
similarity_score) structure. 

This file contains one 
row for each patent. 
Each row contains the 
patent_id and a list of 
tuples. Each tuple 
represents one of that 
patent’s 100 nearest 
neighbors and the 
similarity score 
between that neighbor 
and the focal patent. 
The approximate 
uncompressed file size 
is 21 GB. 

cite_sims.csv Three columns: 
  1. Citing patent number 
  2. Cited patent number 
  3. Similarity score 

This file contains one 
row for each prior art 
reference. Each row 
shows the citing 
patent, the cited 
patent, and the 
pairwise similarity 
between the two. The 
approximate 
uncompressed file size 
is 3 GB. 

patent_doc2v_model.model Binary This file contains the 
genism model object, 
which can be used to 
embed documents not 
used in the training 
set. For instance, 
patents granted after 
the end of 2019. The 
uncompressed size is 
approximately 
500MB. 

Notes: Data available at https://zenodo.org/record/3552078 


