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Summary
The emergence of group constructs is an unfolding process, whereby actions and interactions

coalesce into collective psychological states. Implicitly, there is a connection between these

states and the underlying procession of events. The manner in which interactions follow one

another over time describe a group's behavior, with different temporal patterns being indicative

of different team characteristics. In this study, we explicitly connect event sequences to the pro-

cess of emergence. We argue that the temporal relationship between events in a sequence will

vary depending on the team's psychological outcome. Further, certain patterns of behavior will

be repeated at different rates in teams with varying emergent states. To support this approach,

we apply a statistical methodology—relational event modeling—for analyzing sequences of inter-

actions that builds on the foundation of social network analysis. Using a dataset comprised of 55

work teams of military personnel engaged in a tactical scenario, we found that individuals who

perceived team process (regarding coordination and information sharing) as having different qual-

ities engaged in significantly different patterns of behavior. Our findings indicate that individuals

who had a positive perception of process quality were more likely to initiate communication

events in a reciprocal, transitive, and decentralized fashion.
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1 | INTRODUCTION

Since the introduction of the input–process–output (IPO) model of team

functioning (McGrath, 1964), team process and team emergent states

have been the subject of significant research in the field of organizational

behavior. Team process can be viewed as the various cognitive, affective,

communicative, and behavioral activities that enable and constrain team

members to accomplish their tasks and goals (Cooke & Hilton, 2015, p.

62). To describe the nature or quality of process, much work has focused

on the emergent states of work groups (Kozlowski & Klein, 2000). These

constructs (e.g., mental models, transactive memory, climate, cohesion,

conflict, and psychological safety) may range from the emotional state

of the team, shared cognition, or perceptions of process quality and

performance (e.g., LePine, Piccolo, Jackson, Mathieu, & Saul, 2008). As

Kozlowski and Klein define it, “[a] phenomenon is emergent when it

originates in the cognition, affect, behaviors, or other characteristics of

individuals, is amplified by their interactions, and manifests as a higher‐

level, collective phenomenon” (p. 55; see also Cronin, Weingart, &
wileyonlinelibrary.com/journal/jo
Todorova, 2011). At its core, this view of emergence implies some degree

of dynamism, where a series of actions, interactions, or events coalesce

into an overarching state or property of the group. In other words,

emergent states are outcomes that are shaped, leveraged, and aligned

by team processes (see Kozlowski & Ilgen, 2006).

Inherent in this definition is the acknowledgement that events, as

well as their sequence, timing, and pattern, can explain elements of a

team's behavior that an aggregate emergent state cannot. For instance,

to understand how collective identity emerges in teams, it would be

more fruitful to analyze patterns of event‐based processes such as

interactions, rather than correlating collective identity with another

emergent state such as team trust. This distinction is important

because although the notion of emergence evokes a sense of time,

teams research has primarily considered emergent phenomena to be

static characteristics of the group, rather than a process that develops

and forms over time (Kozlowski, 2015).

Methodological advances in team research have attempted to

remedy such issues by incorporating the notion of process through
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analyzing temporal events. Recent studies have proposed using

sequence methods for analyzing team trajectories (Herndon & Lewis,

2015) and determining behavioral propensities based on patterns of

events (Leenders, Contractor, & DeChurch, 2015; Pilny, Schecter,

Poole, & Contractor, 2016). Leenders et al. (2015) specifically delineate

the advantages of using such an approach, arguing that methods built

on bottom‐up emergence eliminate many of the assumptions inherent

in prior team research. Also in this vein, Morgeson, Mitchell, and Liu

(2015) advance event‐systems theory, arguing that there are both a

multilevel relationship and a longitudinal relationship between events,

behaviors, and organizational states. A common theme among these

studies is an emphasis on the role of events in shaping both future

events and higher order outcomes such as emergent states.

However, this theme is only really implied in the above‐mentioned

studies. Building on the growing literature connecting events and

processes, we propose a process‐oriented relational event‐based

framework for studying emergence and argue that analyzing interac-

tion event patterns over time has both theoretical and computational

advantages over prior methods (Kitts, 2014; Kozlowski, Chao, Grand,

Braun, & Kuljanin, 2013). More specifically, the current research builds

on past like‐minded approaches to emergence by including a higher

order outcome term in the model itself. That is, by including a higher

order outcome as an interaction effect in the sequential model, the

current study adds empirical evidence, beyond theoretical conjecture,

that patterns of interaction do indeed matter in the development of

emergent states.

When compared to approaches that emphasize the character or

structure of team interaction, the relational event approach to team pro-

cess poses a fundamentally different question in the study of team and

group behavior. Whereas traditional methods of team research concep-

tualize process as a convergence of behaviors and actions on a set of

emergent phenomenon (cf. Cronin et al., 2011), the relational event

method views team process as evolutionary (Leenders et al., 2015). Put

anotherway, process grows and evolveswith each new action until it cul-

minates in a final output. Indeed, whereas the relational event framework

provides a methodology for studying sequences and interaction pro-

cesses, its previous applications have been oriented towards modeling

behavioral patterns (e.g., Liang, 2014), rather than higher order phenom-

ena (cf. Butts, 2008; Lerner, Bussmann, Snijders, & Brandes, 2013;

Marcum & Butts, 2015; Vu, Pattison, & Robins, 2015).

Some prior work has differentiated between relational state struc-

tures and event mechanisms. For example, Quintane and Carnabuci

(2016) determine whether individuals in a position of brokerage

actually engage in brokerage behaviors. And Pilny, Proulx, Dinh, and

Bryan (2017) used relational event modeling to look at how phone call

interactions were correlated to various types of relational state net-

works (e.g., friendship and social media). Here, the assumption was that

some macrolevel variable shaped or influenced the interaction pro-

cesses. The relational event model has also been used to describe team

outcomes. Quintane, Pattison, Robins, and Mol (2013) contrast the

short‐ and long‐term behavioral patterns, specifically reciprocity and

closure, in two project teams. Here, relational event patterns are used

to characterize the two groups. However, the authors use qualitative

evidence to suggest a cause for the differences, rather than some mea-

surable outcome variable. In our modeling framework, we instead
assume that the emergent state is a covariate with the generative

mechanisms. With this assumption, we posit that patterns of events

will influence future event occurrences at different rates depending

on the state of the individual or team. As such, the relational event

framework can serve as a computational tool for characterizing the

behavioral processes associated with various emergent states.

The purpose of this study is to expand on prior work and explicitly

connect event sequences to emergence in teams. We argue that a

relational event research approach allows for the development of

new theories, which are significantly more nuanced with regard to

time, and provides a more direct treatment of the mechanisms, which

drive emergence. Specifically, relational events themselves are treated

as the microprocess mechanisms, which coalesce into macrolevel phe-

nomena (Kozlowski et al., 2013). In this study, we apply our proposed

framework to develop and test research questions regarding how

individual perceptions of process quality emerge because of the

underlying patterns of relational events. Using an experimental dataset

of 55 four‐person teams, we find that individuals who perceive their

team as having high‐quality process have significantly different

patterns of interaction over time relative to those who perceive the

team as having poor process quality.
1.1 | Events as a foundation for theory

For some time now, the field of organizational behavior has incorpo-

rated temporality into the study of teams, culminating in the study of

team dynamics. For instance, expanding on the classic IPO framework,

Marks, Mathieu, and Zaccaro (2001) proposed a recurring phase model

of team process, arguing that teams pass through cycles or episodes

while completing a task. As such, different processes are required

during different phases. In a similar vein, Ilgen, Hollenbeck, Johnson,

and Jundt (2005) introduced the input–mediator–output–input model

to describe how teams function over time. The authors define the

output–input component of the Finishing Stage, “where the team com-

pletes one episode in the developmental cycle and begins a new cycle”

(Ilgen et al., p. 521). Implicit in this characterization of a team is the

recognition that a group can evaluate its performance, revise its work

processes, and/or react to environmental changes over time. Likewise,

Pincus and Guastello (2005), borrowing from field theory, note that

self‐organizing dynamics in groups, such as patterned turn‐taking, are

the dominant forces responsible for emergent properties such as con-

flict and closeness. More generally, there is a fundamental recognition

that teams change over time, and that the trajectory of the team is

shaped by both internal and external forces (Arrow, 1997; McGrath

& Argote, 2001). The key challenge however is not the recognition of

time and temporality, but rather the study design, data collection,

and methodology required to appropriately study team dynamics

(Stewart, 2010).

Examining the prior literature, there are several ways in which team

dynamics—both temporal and relational—have been treated theoreti-

cally and empirically. One approach is to treat time as an external influ-

ence on group processes. For example, members of a team may treat

other members differently if they anticipate working together for a lon-

ger period, and managers may alter their decision making for short‐

duration tasks (Bakker, Boros, Kenis, & Oerlemans, 2013). Alternatively,
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teams may experience periods of flux in which members may join,

leave, or change roles. During such periods, the sequencing and timing

of team coordination actions will be disrupted (Summers, Humphrey, &

Ferris, 2011). Another approach is to characterize work styles by their

temporal patterning. Studies have shown that employees will vary in

their pace of work and perceptions of urgency (Mohammed &

Nadkarni, 2011), as well as how they allocate time to multiple teams

or commitments (Cummings & Haas, 2012). Further, in a study of mul-

tiple global organizations, Maznevski and Chudoba (2000) found that

successful virtual teams altered their communication behaviors over

time, and settled into a rhythm of alternating face‐to‐face meetings

and virtual interactions. Finally, an alternative approach to time is to

observe a team at two or more points and identify the longitudinal

changes in some aspect of the team. For instance, over time, a team

may shift its communication structure to become more adaptable or

efficient through increased hierarchy and centralization. These changes

can subsequently impact the performance of the team (Hollenbeck,

Ellis, Humphrey, Garza, & Ilgen, 2011; Moon et al., 2004). On the other

hand, changes to an emergent property of the team may evolve jointly

with the underlying team structure. For example, perceptions of team

psychological safety have been shown to coevolve with teammembers'

social network ties (Schulte, Cohen, & Klein, 2012).

However, many accounts of time and dynamics are still focused on

groups as aggregate entities or networks as fixed relational states,

which, even in multipanel forms, tell us little about the sequences of

interaction that have led to those outcomes. Although states are

certainly significant, it is also important to consider the role of events

in organizational and team processes. The structurational theory of

networks argues that networks are constituted through a recursive

process in which members draw on their knowledge of social

structures as they interact (e.g., a perceived relational state),

dynamically producing the emergence of network states on the basis

of their collective understanding of these structures while reproducing

the social structures (Corman & Scott, 1994). That is, when teams

interact in a series of dynamic communication interactions, they can

draw upon a host of rules and resources (i.e., structures) created by

the group (e.g., group identity, culture, and norms) and, thereby,

recursively perpetuate or change such structures.

Our approach incorporates networks, time, and dynamics into team

and organizational processes and views them not as relational states but

instead as relational events (Butts, 2008). Relational events are episodic

and happen at a specific moment of time (i.e., A sends a message to B

at time T). Unlike relational states, they are well ordered, forming a

relational event history (i.e., the full timing or stream of interactions over

time). Thus, a relational event framework provides information on each

individual unit of interaction, offering “the highest possible resolution

to examine team processes” (Leenders et al., 2015, p. 14). In other words,

the measurement of organizational and team process variables is

conducted at the same level at which key processes are enacted.

In this way, the event framework can address many of the same

questions as prior research, but in a more dynamic fashion. When we

build theories of emergence, we focus on the sequence, rhythm, and

timing of a team's process, rather than an overall description. An

event‐based process theory regarding emergence should explicitly

connect an emergent phenomenon to the variable influence of certain
generative mechanisms on the unfolding of the underlying process. As

such, theories based on relational events will “clearly, concisely, and

precisely specify process mechanisms” (Kozlowski, 2015, p. 291) by

determining the exact pattern and timing in interaction sequences.

The variations in how a process unfolds, and consequently the

generative mechanisms driving the process, can therefore explain

differences in the higher order phenomena.
1.2 | Event models as computational tools

To complement the proposed theoretical approach, appropriate com-

putational modeling techniques are required to build and test theories.

Several methods, particularly in the network sciences, are available for

studying temporal relational data (e.g., Krivitsky & Handcock, 2014;

Snijders, Bunt, & Steglich, 2010). Other approaches include examining

node and edge trajectories (Hasan, 2012), predicting evolving mea-

sures of network centrality (e.g., Allatta & Singh, 2011; Srivastava,

2015), or simulating network dynamics through agent‐based modeling

(Frantz & Carley, 2009). However, these do not provide an explicit

mathematical framework to deal with events as we have defined them.

To remedy this issue, we look to sequence analysis.

Sequence analysis is a general category of methods for describing

how social processes can be represented as series of events (Abbott,

1995). In a recent review, Herndon and Lewis (2015) demonstrated

how sequence methods can be applied to team process dynamics,

and argue that sequences can help shape research questions that

involve time. There have also been advances in the use of sequences

in social network analysis. These include regression models for a series

of binary links (Almquist & Butts, 2014; Vu, Hunter, Smyth, &

Asuncion, 2011; Zenk, Stadtfeld, & Windhager, 2010), models based

on stochastic processes (Perry & Wolfe, 2013; Stadfeldt, 2012), and

models based on event histories (Butts, 2008; De Nooy, 2011).

To accompany our event‐based approach, we utilize the relational

event framework (Brandes, Lerner, & Snijders, 2009; Butts, 2008),

which is a statistical tool for determining the generative mechanisms

that drive the occurrence of future events in a sequence. This model-

ing framework has gained traction as a tool to analyze group and team

interaction processes (Leenders et al., 2015; Pilny et al., 2016;

Quintane et al., 2013; Quintane & Carnabuci, 2016). The relational

event model assumes that all events occur at a certain rate or

frequency, and these rates are a function of the prior sequence as well

as other exogenous factors. Thus, as patterns of action such as

reciprocity or closure repeat themselves over time, subsequent events

become more or less likely. The relational event model shares many of

the modeling capabilities of exponential random graph models (see

Lusher, Koskinen, & Robins, 2013), while incorporating elements of

sequence analysis to leverage continuous event data.
2 | CASE STUDY: GENERATIVE
DETERMINANTS OF PROCESS QUALITY

In the typical IPO paradigm of research on teams, the objective success

or failure of a team can be predicted by the character and quality of the

work processes. Indeed, ameta‐analysis of the literature on team process
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indeed finds that subjective assessments of process quality positively

predict group outcomes (LePine et al., 2008), and a similar finding was

noted by Shuffler, Jiménez‐Rodríguez, and Kramer's (2015) recent review

of the multiteam system literature. As Marks et al. (2001) would con-

clude, process quality is an emergent state of the team not directly mea-

surable through the independent actions of the members themselves. As

such, the development of process quality as an emergent state is tied to

the temporal pattern of observed team process, resembling something

not very far from the basic tenets of social constructivism, that collective

realities (e.g., process quality) are often the result of different patterns of

human interaction (e.g., team process).

In this study, we focus on two subjective measures of effective

process, (a) level of coordination and (b) efficiency in sharing informa-

tion. We employ the definition of coordination provided by Marks

et al. (2001), which states that coordination is “[o]rchestrating the

sequence and timing of interdependent actions” (p. 363). Likewise,

we simply define effective information sharing as the “degree to which

team members share information with each other” (Johnson et al.,

2006, p. 106). Both constructs together have been shown to predict

the objective success of a team (e.g., see reviews by Hollingshead

et al., 2005; Mesmer‐Magnus & DeChurch, 2009; Okhuysen & Bechky,

2009). A high level of coordination indicates that actions were per-

ceived as smoothly planned and creates conditions for orchestrated

activity to exist for teams to perform collective goals (Okhuysen &

Bechky, 2009). Likewise, a high level of information sharing indicates

that the requisite knowledge was provided in a timely manner through-

out the team's work cycle, “thereby enabling groups to reach higher

quality solutions that could be reached by any one individual” (Mes-

mer‐Magnus & DeChurch, 2009, p. 535).

To analyze how different patterns might influence coordination

and information sharing, we focus on two elements of structure, (a)

centralization and (b) hierarchy, which have been empirically tested in

teams (e.g., Ahuja & Carley, 1998; Hollenbeck et al., 2011; Moon

et al., 2004) and in systems of teams (Lanaj, Hollenbeck, Ilgen, Barnes,

& Harmon, 2013). In prior studies, measures of structure were either

static in nature or static for phases of a team's life cycle and changed

at discrete time points. A dynamic version of these constructs would

focus instead on whether the interactions that lead to centralization

and hierarchy unfolded, and what their relative rates were.

Centralization is said to occur when a small few in the team or orga-

nization are responsible for most incoming and outgoing communication.

The process that leads to centralization is commonly referred to as pref-

erential attachment (Barabási & Albert, 1999) or the Matthew effect

(Merton, 1968). In process terminology, such a rich‐get‐richer phenome-

non exists because of the tendency for nodes to establish tieswith nodes

that are already popular. Thus, preferential attachment would predict

that a sequence of communication events is likely to be exponentially

influenced by the continuous buildup of past events by popular actors.

Centralization has had mixed theoretical and empirical relation-

ships with team performance (see Bunderson, van der Vegt, Cantimur,

& Rink, 2016, p. 1280). On the one hand, much of the collective action

literature, along with other fields, has highlighted the positive benefits

of network centralization (Marwell & Oliver, 1993). In this view, cen-

tralization is vital to ensuring coordination and information sharing

because centralized members (i.e., the critical mass) can reach almost
anybody in the network to mobilize for collective action and teamwork

(see Marwell & Oliver, 1993, pp. 105–106). Castells (2009) calls this

network power, and it is the type of power that comes with highly cen-

tral actors being able to influence others in the network.

On the other hand, there exists some evidence to suggest that a

decentralized network structure is more efficient with regard to

coordination and information sharing. For one, there is the systems

flexibility argument (Cox, 1994), which posits that the diversity of par-

ticipation from all team members creates a team or organization that is

more fluid and flexible in response to environmental and task changes.

This advantage is a consequence of multiple members' perspectives

being integrated, which might include better and/or more critical infor-

mation. Likewise, centralized structures in which only a few members

are receiving information may be too deterministic, reductionist, and

bureaucratic (McChrystal, Silverman, Collins, & Fussell, 2015). For

instance, Woolley, Chabris, Pentland, Hashmi, and Malone (2010) have

also demonstrated the positive influence of decentralized turn‐taking

on the team performance across various tasks (see also Rulke &

Galaskiewicz, 2000; Sparrowe, Liden, Wayne, & Kraimer, 2001).

For instance, in work teams, when members are primarily sending

messages to one member in the group, there may be the impression that

the team is functioning in a predictable and mechanistic way (Kilduff &

Tsai, 2003, p. 32). This pattern may create perceptions that coordination

and information sharing are too rigid and routine to be effective (e.g., why

do I always have to run this through team member X?). On the other

hand, some work team members may perceive centralization as

conducive to effective leadership (Brands, Menges, & Kilduff, 2015),

creating perceptions that the team can effectively coordinate tasks and

share information through the creation of such centralized hubs (e.g.,

why does everything always have to be run by everybody?).

As this example implies, there is an underlying dynamic element to

the emergence of perceived process quality. Emergent states, such as

perceptions or feelings, develop over time. They grow and change both

endogenously (e.g., they naturally get stronger with time) and exoge-

nously (e.g., actions and experiences influence states). One type of

exogenous influence is the set of interactions initiated and received

by the focal individual. Indeed, relational events are expressions of

the underlying tendencies governing communication (Poole, 2012)

and should thus recursively shape and be shaped by individuals'

psychological states. In the case of a centralized tendency, a person

will increasingly display a propensity to communicate with one individ-

ual. Likewise, when an individual sends messages at a higher rate, they

will occupy a more focal position in the group. This experiential struc-

ture will help to shape their view of the group. Thus, rather than take a

static configural view of process, we emphasize the role of repetitive

patterns of action in influencing perceived coordination and

information sharing. Accordingly, we ask:
R1a:
 Do dynamic interactions that lead to centralization have a

relationship with coordination?
R1b:
 Do dynamic interactions that lead to centralization have a

relationship with information sharing?
Although sometimes conflated with one another, hierarchy is

distinct from network centralization. Hierarchy “appears as
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unreciprocated ties directed from each position to the position imme-

diately ‘above’ it” and looks similar to “a chain of command in an orga-

nization” (Wasserman & Faust, 1994, p. 420). Bunderson et al. (2016)

refer to this type of hierarchy as acyclicity. The authors argue that

acyclicity is distinct from hierarchy as commonly perceived, often

measured as steepness or centralization. Acyclicity refers to one‐way

flows of cascading relationships as often emphasized by network

researchers (e.g., Everett & Krackhardt, 2012). Although Krackhardt

(1994) provided explicit measures on the basis of graph theoretical

configurations, there has been little theorizing on the processes that

specifically lead otherwise free‐to‐organize actors to naturally create

acyclical hierarchies. One theory that may hold some promise is Barker

and Cheney's (1994) theory of concertive control, which explains how

organizational members self‐organize into hierarchical relationships on

the basis of a process of identification with the values of management

or society. In other words, if team members identify (consciously or

not) with hierarchy as an effective functional mechanism to achieve

goals (Hollingshead et al., 2005) or simply a pervasive institutional rule

(Lovaglia, Mannix, Samuelson, Sell, & Wilson, 2005), then they will

create relationships that resemble such structures. Another related

concept is Haken's (1984) theory of synergetics, which has been used

to describe how similar hierarchical command structures can be seem-

ingly self, rather than top‐down organized. Here, a driver–slave

relationship can develop where once a hierarchical cascade develops;

it acts a driver that influences bottom‐level dynamics giving rise to

the hierarchy (Guastello & Liebovitch, 2009). Alternatively, cascading

flows can be driven by functional interdependence, meaning that teams

are constituted by actors with different skills and roles, which create

conditions for a division of labor. Such functional interdependence is

common for influencing network interactions in multiteam systems

(Poole & Contractor, 2011).

Like centralization, hierarchy has also had mixed results with team

performance (see a review by Bunderson et al., 2016). Classic organiza-

tional theory has suggested that the main benefit of hierarchy is task

efficiency, conflict reduction, and clear accountability (see Halevy,

Chou, & Galinsky, 2011, for a more recent theoretical review). How-

ever, only a handful of studies have explicitly made the link between

network hierarchy and team performance (e.g., Ahuja & Carley, 1998;

Halevy, Chou, Galinsky, & Murnighan, 2012). For instance, when hier-

archy is analyzed as acyclicity, Bunderson et al. (2016) found that it had

a positive relationship with performance and reduction of conflict.

Contrastingly, the common criticism of hierarchy is that it can be

overly oppressive (e.g., Max Weber's infamous iron cage) and not

equipped to handle complex environmental changes due to their strict

structure (Back, 1974). However, very little work has tested such a

negative relationship between hierarchy (as acyclicity) and team per-

formance. To the authors' knowledge, Cummings and Cross' (2003)

study on the work on 182 work groups in a Fortune 500 telecommu-

nications firm is the only one to demonstrate a negative relationship.

They found that an acyclical hierarchical structure was negatively

related to performance evaluations by senior‐level managers and team

members.

For instance, when work teams engage in interaction sequences

that result in many local acyclic structures, they may be consistent with

their expectations and norms about how teams are traditionally
supposed to function as a hierarchy (Kilduff & Tsai, 2003, p. 39). When

individuals' ontological securities are not challenged or violated, per-

ceptions of coordination and information sharing may be higher

because they do not disrupt these notions of a natural pecking order.

On the other hand, norms regarding hierarchy are changing in the

wake of issues such as workplace democracy and team management

(Harrison & Freeman, 2004). When team members rarely reciprocate

and have to go through an acyclic chain of command, they may per-

ceive such structures as outdated, ineffective, and repressive, which

may then negatively influence how they recall coordination and infor-

mation during a task.

In these examples, as in the case of centralization, it is not an

individual's position in a network that influences their perceptions

but rather the pattern of interactions they are involved in over time.

As a team member displays a greater tendency towards reciprocity,

for example, they are engaging in less hierarchical behavior. Similarly,

an individual may experience a hierarchical structure if they send and

receive messages through a single channel, rather than with multiple

others. Accordingly, the accumulation of relational events is represen-

tative of a team member's perceived position in the group, and subse-

quently should influence their perceptions of the group's process

quality. As such, we ask:
R2a:
 Do dynamic interactions that lead to hierarchy have a relation-

ship with coordination?
R2b:
 Do dynamic interactions that lead to hierarchy have a relation-

ship with information sharing?
3 | METHODS

3.1 | Data

Data collection was performed during the Leader and Team Adaptabil-

ity in Multi‐National Coalitions project of the North Atlantic Treaty

Organization (NATO) Allied Command Transformation Futures and

Engagement Concept Development and Experimentation (TR‐HFM‐

138, 2012). The original data collection was part of a study to

understand how personality and cultural tendencies affect situational

awareness, team interaction, and team performance. The deidentified

dataset was made available for research purposes. To collect data,

participants from several NATO countries took part in a simulated

military‐style strategy game. The game scenario and data logging/pre-

processing software were developed for the Defense Modeling and

Simulation Office.
3.1.1 | Participants

The NATO dataset included 55 four‐person teams from the United

States, Bulgaria, Norway, Sweden, and the Netherlands. The partici-

pants were all military officers. Most teams were comprised of partic-

ipants from a single country, but a few teams possessed mixed

nationality. Participants varied in age, rank, computer proficiency,

English proficiency, and prior contact. Before participating in the game
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task, participants completed a training scenario on how to play the

game. Each participant only played the game once.

3.1.2 | Task

The game activity was a four‐person team scenario implemented in the

Neverwinter Nights game engine using an experimental platform known

as SABRE (Leung, Diller, & Ferguson, 2004). The teams were tasked to

maximize goodwill points while searching a town for weapons caches,

including both exterior and interior locations. Goodwill was gained by

taking weapons caches into custody, but goodwill was lost by searching

houses or containers and not finding weapons. The activity included a

planning phase at headquarters and a mission execution phase in the

town. The teams were given unlimited time to complete the planning

phase of the mission, and 1 hr for mission execution.

During mission execution, by interacting with computer‐controlled

townspeople through dialog menus, participants could gather tips

about possible cache locations to help focus their search efforts. The

in‐game gear included weapons sensors to screen houses and con-

tainers for weapons without entering to conduct a search; however,

there were limited numbers of these sensors. During the game, partic-

ipants could communicate with their teammates through text chat,

forwarding/assigning tips, and leaving markers at locations. An undi-

rected text chat could be received by zero to three teammates,

depending on the in‐game distance from the originator. A directed text

chat was received by exactly one teammate, regardless of in‐game dis-

tance. During mission execution, players could choose to split up to

cover more ground, or stay close for easier communication.

The scenario was designed so that participants needed to coordi-

nate and communicate to succeed. The town was large enough so that

a brute force searching strategy would not be effective, requiring a

combined use of tips from townspeople and weapons sensors. Towns-

people with tips were widely distributed, so players had to seek them

out. The tips often referenced locations far away from the informant,

so it was not efficient for each player to follow up on all the tips he

or she gathered. As weapons sensors were limited in number, the team

had to share and prioritize.

3.1.3 | Data collection

The activity data were collected via automated server logging of partic-

ipant actions and interactions during a multiplayer online team game.

When all four members of the team shared the same nationality, they

were collocated but visually isolated from each other using partitions

and isolated from sound by wearing headsets. Multinational teams

operated remotely. No verbal communication was allowed. Partici-

pants completed online pregame and postgame surveys, including

familiarity with English, comfort with computers, prior experience

working with other participants, demographic information, and subjec-

tive ratings of teammates and team dynamics. All instructions, surveys,

and game interactions were in English.

3.2 | Measures

3.2.1 | Team constructs

Our two team‐level constructs, team coordination and team informa-

tion sharing, were measured on a 5‐point Likert scale. To assess
coordination, we asked the question “In your opinion, to what extent

was the team's behavior coordinated?” with a response of 1 indicating

poorly coordinated and 5 indicating extremely well coordinated. Across

all participants, the average response was a 2.35 with a standard error

of 1.19. To assess information sharing, we asked the question “In your

opinion, to what extent did team members provide relevant informa-

tion to another team member, in a proactive way, without that team

member having to ask for it?” A response of 1 indicated not at all and

5 indicated very frequently. Across all participants, the average

response was a 2.48 with a standard error of 1.18.

3.2.2 | Time‐invariant controls

From our initial surveys, we collected a variety of demographic infor-

mation, which we included in our models as controls. First, we asked

participants to describe the extent of their prior experience with other

members of the team. The responses were recorded on a Likert scale

with a value of 1 indicating no experience to 7 significant experience.

The mean response was 3.65 with a standard error of 2.17. Second,

we asked participants to list their nationality. From the responses, we

created a control of same nationality, which took a value of 1 if all par-

ticipants shared the same nationality, and 0 otherwise. By design, this

variable also encapsulates collocation. Out of 55 sessions, 44 were car-

ried out by members of one nationality. Next, participants listed their

age, which ranged from 19 to 57 years with a mean of 31.37 and stan-

dard error of 7.61. Finally, participants were asked to give their English

proficiency, which we recorded on a Likert scale from 1 indicating poor

to 5 indicating excellent, and their computer proficiency, which we

recorded on a Likert scale from 1 indicating poor to 3 indicating good.

The average scores in our sample were 3.73 and 2.37 with standard

errors of 0.81 and 0.58, respectively. A summary of all time‐invariant

measures—the team construct response variables and our demo-

graphic controls—is given in Table 1.

3.2.3 | Generative communication mechanisms

Measures of generative process were performed by unitizing the

server logs into communication events. Given the granular nature of

the data, we choose to apply a relational event framework for our anal-

ysis (Pilny et al., 2016). Each relational event constitutes a timestamp,

sender, and receiver of the message. We represent these components

with a set of functions (Butts, 2008); for an event e, s(e) is the sender,

r(e) is the receiver, and τ(e) is the time. For example, if we observe an

event e = {Player A; Player B; 17 : 00}, then s(e) = Player A, r(e) = Player B,

and τ(e) = 17 : 00. The full sequence of these events is notated E. From

these data, we can construct event sequences that represent various

interaction patterns. To represent the accumulated weight of the

interaction between two individuals, we apply the operationalization

of Brandes et al. (2009):

ωt i; jð Þ ¼ ∑
e∈E

1 s eð Þ ¼ i; r eð Þ ¼ j; τ eð Þ<tf g exp −
Δte log 2ð Þ

T1=2

� �

Here, Δte is the time that passed between the current event and

the event prior. The value T1/2 is the half‐life of an event. We apply a

half‐life to represent the notion of memory in the team (Leenders

et al., 2015). As time passes, the effect of an interaction should fade



TABLE 1 Time‐invariant variables

Variable Description Measurement

Psychological constructs

Coordination The degree to which an individual i views the team's actions as coordinated C(i) ∈ {1,…, 5}

Information sharing The degree to which an individual i believes that information is shared effectively within the team I(i) ∈ {1,…, 5}

Controls

Prior experience The amount of familiarity an individual i has with the other members of the team xEX(i) ∈ {1,…, 7}

Nationality An indicator for whether the members of the team share the same nationality as i xNAT(i) ∈ {0, 1}

Age The age of the participant i xAGE(i) ≥ 0

English fluency The participant i's comfort with reading and writing in the English language xENG(i) ∈ {1,…, 4}

Computer proficiency The participant i's comfort with using a computer xCOM(i) ∈ {1,…, 3}
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relative to more recent events. The shorter the half‐life, the more

quickly prior events are forgotten. Thus, the strength of the interaction

from i to j at time t given by ωt(i, j) is equivalent to the number of mes-

sages sent from i to j up to time t, weighted exponentially by how long

ago they occurred.

Building on this weighting function, we can create statistics that

reflect the frequency, timing, and pattern of past interactions. We

specify five structural mechanisms, which we define in the proceeding

section: inertia, reciprocity, triadic closure, activity rate, and preferen-

tial attachment. These five mechanisms conceptually map on to more

static representations of centralization and hierarchy. Specifically, as

a certain pattern repeats itself over time, the group will become more

entrenched in the corresponding structural alignment. Whereas the

mechanism inertia corresponds to a baseline tendency to interact,

the mechanisms reciprocity and triadic closure are more closely related

to hierarchy; the mechanisms activity rate and preferential attachment

are related to centralization. In summary, hierarchical signatures are

those which correspond to more or less cyclicality in the system; cen-

tralized signatures are those which correspond to more or less activity

involving a select few “hubs” in the group. In Figure 1, we illustrate

archetypical network structures characterized by centralization and

hierarchy.

Inertia represents the tendency for an individual to send messages

to a target whom they have frequently corresponded with in the past

(Brandes et al., 2009). This measure is comparable to the persistence
FIGURE 1 Centralized and hierarchical networks and corresponding mech
metric computed by Butts (2008), although that statistic does not

explicitly include the timing of prior events. Reciprocity represents

the tendency for individuals to reply more frequently to those who

have sent the most messages to them in the past.

We operationalize triadic closure specifically as transitive closure,

which is the tendency for an individual i to send a message to k with

greater frequency if there is a third party j who often acts as a broker

between the two (Brandes et al., 2009; Quintane et al., 2013). We

compute transitive closure similarly to how Butts (2008) computes

outbound two‐paths. More generally, we sum the strength of all possi-

ble third‐party relationships, assigning equal weight to each. Naturally, it

is possible that many of these two‐paths have zero weight; these will

have no impact on the measure of transitive closure. This fact follows

the approach of prior methods. Butts (2008) computes the transitivity

measure by summing the minimum weights of every outbound two‐

path (i.e., if i→ j has weight 1 and j→ k has weight 0, the contribution

of the i→ j→ k path would be the minimum of 1 and 0, or 0). Accord-

ingly, incomplete or empty paths are not considered. Quintane et al.

(2013) sum the product of the weights along a path, scaled proportion-

ate to the activity of the sender and receiver (i.e., i→ j has weight 1 and

j→ k has weight 0, the contribution of the i→ j→ k path would be 1

times 0, or 0). Again, incomplete or empty paths are not considered.

Thus, there can be a high measure of triadic closure between two

nodes if there is one strong third‐party relationship, many weak

third‐party relationships, or some combination of the two. In our
anisms
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analyses, we choose to follow the approach of Quintane et al. (2013)

and use a multiplicative path weight, scaled by the overall volume

along all paths. To illustrate this fact numerically (excluding scaling),

consider the following example. If ωt(i, j) = 3, ωt(j, k1) = 1, and ωt(j, k2)

= 2, then xTC(i, k1, t) = 3 × 1 = 3 < xTC(i, k2, t) = 3 × 2 = 6; in this case, the

measure favors the dyad with the higher weight two‐path. As another

example, suppose ωt(i, j1) = 3, ωt(i, j2) = 2, ωt(j1, k1) = 1, ωt(j1, k2) = 0, ωt(j2,

k1) = 1, and ωt(j2, k2) = 1. Then, xTC(i, k1, t) = 3 × 1 + 2 × 1 = 5 > xTC(i, k2, t)

= 3 × 0 + 2 × 1 = 3; here, the measure is greater for the dyad having

multiple two‐paths with nonzero weight.

The activity rate of an individual is simply the volume of prior

actions taken by that person, weighted by recency. As such, an

individual's activity rate is a dynamic analog to out‐degree and repre-

sents the tendency for an individual to actively become more or less

central in the communication network. Finally, preferential attachment

describes the tendency for messages to be sent to the most popular or

central actors in the network (Barabási & Albert, 1999). We compute

preferential attachment using the formula provided by Butts (2008). In

Table 2, we summarize our generative measures and provide the for-

mulae for computing them.

To capture the differences in behaviors between teams displaying

high coordination versus low coordination—and high versus low infor-

mation sharing—we introduce interaction terms to the relational event

model. For each pattern, we include as a continuous moderator the

measure of the team construct. The resulting models will thus depict

the behavioral patterns associated with a certain level of the outcome

measure. We differentiate our approach from a typical causal inference
TABLE 2 Time‐varying generative mechanisms

Variable Visualization Probabilistic interpre

Inertia As i sends more mess
likely to send mess

Reciprocity As j sends more mess
likely to send mess

Triadic closure As i sends more mess
sends messages to
to send messages d

Activity As i sends more mess
less likely to send m

Preferential
attachment

As j both sends and r
i becomes more/les
in the future

Note. A solid line indicates the proposed future event. A dashed line indicates a
node, the white node is the receiver, and the gray node is an arbitrary third par
model; rather than predict the outcome as a function of some anteced-

ents, we characterize an outcome by the underlying process associated

with it. In this way, we avoid claiming that a pattern or measure is

better or worse, or that a specific sequence leads to a specific result.

Rather, we analyze the extent to which behavioral patterns differ

across values of psychological states. In other words, we may test if

an individual who views his or her team as highly coordinated has a

greater tendency towards reciprocity than an individual who has a

negative view of the team's coordination. A recent application of this

modeling approach focuses on brokers in an organizational network

and examines how brokers engage in different dynamic behavioral

patterns (Quintane & Carnabuci, 2016).
3.3 | Modeling

3.3.1 | Fitting relational event models

In a relational event model, the dependent variable is an interaction

event between members of the group. The goal of this statistical tool

is to determine what factors most accurately predict this event's occur-

rence, given the characteristics of the sender, characteristics of the

receiver, the timing of the event, and the pattern of interactions that

have already transpired. Following this logic, at any given time, there

is a rate or frequency with which a specific event is expected to occur.

The more likely an event, the larger the rate and vice versa. Butts

(2008) thus proposes the following function to describe the rate of

event e = {i, j, t}:
tation Formula

ages to j, i becomes more/less
ages to j in the future xI i; j; tð Þ ¼ ωt i; jð Þ

∑kωt i; kð Þ

ages to i, i becomes more/less
ages to j in the future xR i; j; tð Þ ¼ ωt j; ið Þ

∑kωt k; ið Þ

ages to k who subsequently
j, i becomes more/less likely
irectly to j in the future

xTC i; j; tð Þ ¼ ∑k≠i≠ jωt i; kð Þωt k; jð Þ
∑v∑k≠i≠vωt i; kð Þωt k; vð Þ

ages overall, i becomes more/
essages to j in the future xA i; j; tð Þ ¼ ∑kωt i; kð Þ

∑v∑kωt v; kð Þ

eceives more messages overall,
s likely to send messages to j xPA i; j; tð Þ ¼ ∑k ωt j; kð Þ þ ωt k; jð Þð Þ

∑v∑k ωt v; kð Þ þ ωt k; vð Þð Þ

prior relationship. Arrow indicates directionality. The black node is the focal
ty. All equations use the weight formula defined in the text.
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λij t; θð Þ ¼ exp ∑
P

p¼1
θpxp i; j; tð Þ

 !

Here, xp is a statistic that determines the rate of the event. The

value θp is an intensity parameter controlling the magnitude of xp's

effect on the rate. The statistics used to construct the rate are our

time‐invariant controls (see Table 1) and our generative mechanisms

(see Table 2). As a simple example, if θAGE is positive, then the older

someone is, the greater their rate of sending messages. In this way,

the relational event model has a similar interpretation to a conditional

multinomial logistic regression model.

To fully incorporate the effects of sequence and timing into our

model, we can express the full probability of the event sequence E

using the rate function we defined. For a set of events, we follow prior

work (Brandes et al., 2009; Butts, 2008; Marcum & Butts, 2015;

Stadtfeld, 2012) in defining the full likelihood, as follows:

f Eθð Þ ¼ ∏
e∈E

λs eð Þ;r eð Þ τ eð Þ; θð Þ× exp −Δte ∑
a∈Aτ eð Þ

λs að Þ;r að Þ τ að Þ; θð Þ
 ! !

We may interpret the above formula as the probably of the

specific event e occurring, multiplied by the probability that in the

timespan Δte, none of the other potential events a∈Aτ eð Þ did occur.

The setAt, known as a risk set (Butts, 2008), is a list of the events that

are possible at time t. This set may be all the dyads (i.e., all pairs of

nodes in the network), or some subset. For example, Quintane,

Conaldi, Tonellato, and Lomi (2014) consider bipartite relational event

models; in that instance, the risk set excludes all events in which the

sender and receiver belong to the same group. The risk set may also

change over time as nodes enter or leave the network. For our case

study, we consider all pairs as possible relational events, excluding

self‐loops. Thus, there are 12 potential events at any point in time.

Because each event in the sequence is conditionally independent given

the prior history, we may take the product of these probabilities. This

formulation and interpretation follow directly from the statistical tech-

niques of survival modeling (Cox, 1972) and event‐history modeling

(Blossfeld & Rohwer, 1995).

Our modeling of event patterns explicitly deals with time in two

ways. First, by using the half‐life weighting scheme, events that occur

more recently are more impactful than are those that occurred further

in the past. This approach carries over into the computation of our

sufficient statistics, which are derived from the interaction weights.

For instance, consider the value of inertia. If individual i is considering

sending a message to j or k, and i has sent five messages to each in the

past, then the inertia value will be greater for whichever target i has

more recently sent the messages. Second, the full likelihood function

considers the time between events, Δte. In this way, the sufficient

statistics are mapping not just to the likelihood of a pair but also to

how long the interval is between events. As such, a positive parameter

value θ indicates that larger values of the corresponding statistic will

lead to a more rapid pace of events.

Finally, because we have multiple event sequences generated by

the 55 experiments, we need to apply a hierarchical modeling scheme

to account for the differences between teams. To account for this, we

apply the hierarchical relational event modeling approach (DuBois,
Butts, McFarland, & Smyth, 2013). This methodology uses principles

of hierarchical linear modeling applied to social network analysis

(Sweet, Thomas, & Junker, 2013). An alternative approach would be

to conduct a meta‐analysis of the parameters corresponding to each

generative mechanism (Snijders & Baerveldt, 2003), which would yield

analogous results given the same modeling assumptions. We assume a

fixed‐effects model, in which there is one upper‐level distribution of

parameters θ, which fit each of our event sequences. This assumption

is based on our inclusion of multiple individual‐level controls, which

account for many of the explicit variations between teams. We do note

that it is possible to include higher order terms to reflect differences

among teams, but for this study, we do not consider these.

We fit the model to our observed data using maximum likelihood

estimation (MLE). The result of this modeling approach is a set of

parameters θ⋆ = argmaxf(E(1),…, E(55)∣ θ), which describe the direction

and magnitude of the effect that each variable has on the likelihood

of an interaction event. The statistical significance of the parameters

can be determined using their standard error, which is computed using

the inverse Hessian matrix at the final MLE solution.
3.3.2 | Goodness of fit

We assess the goodness of fit for each model by computing the log like-

lihood, Akaike information criterion (AIC), and Bayesian information cri-

terion score at the final solution. When comparing two solutions, a

larger log likelihood for one parameter vector indicates that the data

are given a higher likelihood of occurring given that set of parameters—

that is, the parameters are a better fit. The AIC score is a similar measure,

although lower values are preferred. The Bayesian information criterion

is an alternative to the AIC, which penalizes a model for having too many

terms. As such, it is a more conservative measure for determining

whether an additional statistic adds value. To assess the goodness of fit

for our models, we first find the parameters for a relational event model

with only control terms. Then, we add each generative mechanism indi-

vidually and finally add all five. For each combination, we may compute

all three measures of fit to determine which model is best.
4 | RESULTS

We analyzed a total of 35,829 events across 220 people organized into

55 groups of four (660 possible dyads). InTable 3, we present summary

statistics and intercorrelations between the time‐invariant study

variables including coordination, information sharing, and demographic

metrics. Perceived coordination and information sharing have a relatively

strong positive correlation. There is also a significant correlation between

prior experience and being from the same nationality, essentially indicat-

ing that countrymen are more likely to have worked together. It is also

worth noting that younger individuals are more likely to report higher

fluency in English and computer proficiency, and that these skills are

positively correlated. Interestingly, we observe that there is not a

significant correlation between prior experience and the two measures

of process quality; in other words, having worked together previously

does not positively bias perceived coordination or information sharing.

We conducted our relational event analysis in two steps: first, we

computed a model with only control variables and then added each of



TABLE 3 Summary statistics and intercorrelations among psychological variables and time‐invariant controls

Variable Mean SE 1 2 3 4 5 6

1. Coordination 2.35 1.18

2. Information sharing 2.48 1.19 0.37

3. Prior experience 3.65 2.17 0.04 0.04

4. Nationality 0.80 0.16 −0.04 0.03 0.45

5. Age 31.37 7.61 −0.16 −0.19 −0.19 −0.07

6. English fluency 3.73 0.81 0.04 0.06 −0.24 −0.06 −0.09

7. Computer proficiency 2.37 0.58 0.14 0.13 −0.18 −0.03 −0.16 0.38

Note. Values computed across 220 individuals. Pearson correlations with |ρ| > 0.13 are significant at the p < .05 level.

10 SCHECTER ET AL.
the five generative mechanisms individually and as a group to deter-

mine if additional variance was explained by the dynamic variables;

second, we fit full models with interaction variables representing

individual‐level measures of coordination and information sharing.
Model selection

For the first step of our analysis, we fit multiple models to determine

which combination of variables best reflected the patterns in the data.

The results of this procedure are presented in Table 4.

Our baseline model contained each of the demographic control

variables. We then added each generative mechanism and then ran a

full model with every variable included. FromTable 4, we observe that

each generative mechanism improved the model quality significantly

when added independently, justifying our inclusion of these variables.

Further, the full model—controls plus all five generative mechanisms—

was the most preferred overall model. Essentially, the most variance in

the sequence data is explained by a model containing both controls

and generative mechanisms.
Analysis of interactions

In the second phase of our analysis, we ran relational event models,

which included the interactions between the perceived team

constructs and the generative mechanisms. In Table 5, we present
TABLE 4 Summary of model fits

Model variables Parameters Log likelihood AIC BIC

Control 6 −207,780 415,570 415,620

Control + Inertia 7 −192,420 384,850 384,900

Control + Reciprocity 7 −203,440 406,890 406,940

Control + TC 7 −196,090 392,200 392,260

Control + Activity 7 −201,090 402,190 402,250

Control + PA 7 −197,840 395,690 395,750

Full model 11 −187,790 375,600 375,690

Note. We report the log likelihood, AIC, and BIC scores for each model. A
larger log likelihood, smaller AIC, and smaller BIC indicate better goodness
of fit. The control model includes all time‐invariant survey variables. We
include each relational event statistic individually. Note that TC = triadic
closure and PA = preferential attachment. The difference in log likelihood
between each model is significant at the p < .001 significance level by
applying the likelihood ratio test. The full model includes all five statistics.
This final model is the best fit to the dataset by all three measures.
AIC = Akaike information criterion; BIC = Bayesian information criterion.
the parameter estimates for the control model (Model 0), the full model

(Model 1), and the interaction models (Models 2 and 3).

We first observe the overall patterns in the data, as given by the

generative mechanism parameters in Model 1. There is a positive

tendency towards inertia (θ = 0.73, p < .001), reciprocity (θ = 0.08,

p < .001), and triadic closure (θ = 0.11, p < .001). Essentially, partici-

pants tend to send messages to those whom they have sent and

received messages with frequently in the past. Further, they were

likely to send messages to targets with whom they had frequently

communicated via intermediaries in the past. We also note that there

is a tendency away from sender activity (θ = − 0.21, p < .001), and pref-

erential attachment (θ = − 0.42, p < .001). This result implies that the

communication processes are relatively decentralized overall, without

any one individual dominating the discourse.

Next, we consider Models 2 and 3, which include the effects of

perceived coordination and information sharing, respectively. We find

that when an individual perceives the group to be more coordinated,

they have a greater tendency towards inertia (θ = 0.09, p < .001), and

triadic closure (θ = 0.02, p < .001), and tend to avoid becoming more

central over time (θ = − 0.04, p < .001). Similarly, we find that when

an individual perceives the group share information effectively, they

have a greater tendency towards inertia (θ = 0.06, p < .001), reciprocity

(θ = 0.01, p < .001), and triadic closure (θ = 0.01, p < .001), whereas they

tend to be less likely to become more central (θ = − 0.03, p < .001) and

avoid preferential attachment (θ = − 0.08, p < .05). One explanation for

this behavior is a greater sense of efficiency; the individual's communi-

cation patterns are repetitive, and the participant engages in both fre-

quent direct contact and communication through third parties. Further,

this individual is less likely to seek out the most central individual or

become more central themselves, suggesting they prefer a more

decentralized communication structure.

To illustrate these interaction effects, we plot the marginal log

likelihood of an event on the basis of the level of each generative

mechanism, holding the others constant. The marginal likelihood of

an event given a level of statistic p, holding all else constant, is equal to

Pp e ¼ i; j; tf g; θð Þ ¼ 1
1þ exp − θpxp þ θpþ5xpC ið Þð Þð Þ:

Here, xp is a constant level of the statistic p; we set this measure to

the mean value of the generative mechanism, plus or minus the stan-

dard error. We then compute this marginal likelihood across possible

values of C(i). For coordination, these plots are in Figure 2. We follow



TABLE 5 Relational event model parameter estimates

Variable Model 0 Model 1 Model 2 Model 3

Controls

Rate −4.53 (0.04)*** −5.96 (0.04)*** −5.96 (0.04)*** −6.35 (0.06)***

Prior experience 0.13 (0.01)*** 0.17 (0.01)*** 0.13 (0.01)*** 0.16 (0.01)***

Same nationality 0.01 (0.02)*** −0.18 (0.02)*** −0.13 (0.02)*** −0.16 (0.02)***

Age −2.85 (0.08)*** 0.79 (0.08)*** 0.60 (0.08)*** 0.83 (0.08)***

English fluency 0.63 (0.03)*** 0.15 (0.03)*** 0.22 (0.03)*** 0.25 (0.03)***

Computer proficiency −0.11 (0.03)*** −0.16 (0.03)*** −0.32 (0.03)*** −0.33 (0.03)***

Structural variables

Inertia 0.73 (0.01)*** 0.44 (0.02)*** 0.50 (0.02)***

Reciprocity 0.08 (0.00)*** 0.05 (0.01)*** 0.02 (0.02)***

TC 0.11 (0.00)*** 0.04 (0.01)*** 0.08 (0.01)***

Activity −0.21 (0.00)*** −0.06 (0.01)*** −0.09 (0.01)***

PA −0.42 (0.03)*** −0.26 (0.08)*** −0.08 (0.08)*

Coordination effects

C(i) 0.02 (0.01)**

C(i) × Inertia 0.09 (0.00)***

C(i) × Reciprocity 0.01 (0.00)***

C(i) × TC 0.02 (0.00)***

C(i) × Activity −0.04 (0.00)***

C(i) × PA −0.03 (0.02)***

Information‐sharing effects

I(i) 0.11 (0.01)***

I(i) × Inertia 0.06 (0.01)***

I(i) × Reciprocity 0.01 (0.01)***

I(i) × TC 0.01 (0.00)***

I(i) × Activity −0.03 (0.00)***

I(i) × PA −0.08 (0.02)***

Log likelihood −207,780 −187,790 −187,320 −187,340

AIC 415,570 375,600 374,680 374,720

BIC 415,620 375,690 374,820 374,860

Note. Models fit to 35,829 events across 55 teams of 4. Results of relational event models for the control variables (Model 0), control variables plus structural
variables (full model/Model 1), and full models plus interaction terms (Models 2 and 3). Values are parameter estimates, with standard errors in parentheses.
Goodness of fit is assessed by log likelihood, AIC, and BIC. AIC = Akaike information criterion; BIC = Bayesian information criterion; PA = preferential attach-
ment; TC = triadic closure.

*p < .05. **p < .01. ***p < .001.
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the same procedure for information‐sharing values I(i) and illustrate

those results in Figure 3.

Our graphical analysis supports the numerical results. As an indi-

vidual increasingly perceives the team to be performing well—that is,

they are more coordinated or share information better—they are more

likely to be motivated by inertia, reciprocity, and triadic closure. Addi-

tionally, they are much less likely to send a message on the basis of

their prior activity or preferential attachment to a teammate. The sim-

ilar patterns exhibited are likely due to the strong correlation between

the two measures of team performance.

When considered together, the empirical evidence suggests a link

between positive perceptions of team coordination and information

sharing and decentralized, nonhierarchical behaviors. To be more
specific, individuals who perceive greater process quality have a lower

activity rate and tend to avoid preferential attachment. Thus, it is unlikely

that these participants will dominate the discourse by sending out a large

number of messages. They will also more evenly distribute their commu-

nication among their team members, rather than focus all of their atten-

tion on one central person. Individuals who perceive high process quality

also tend to be highly reciprocal in communication, which implies that

they are engaging in discussion with other members of the team, rather

than taking or receiving orders. Further, these participants have a ten-

dency towards transitivity, indicating that they are more likely to engage

someone directly if they have previously utilized an intermediary.

In sum, individuals who perceive greater coordination and infor-

mation sharing engage in more open and democratic patterns of



FIGURE 2 Interaction effects between coordination and generative mechanisms. Notes. The horizontal axis is the coordination score provided by
the focal individual. The vertical axis is the log likelihood of an individual sending an event, based solely on the value of the generative mechanism.
The solid line represents the above‐average case (e.g., high inertia), and the dashed line represents the below‐average case. For each variable, we
hold the other four generative mechanisms constant at their average value
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communication. Indeed, as we argued previously, centralization and

hierarchy may lead to a rigid structure, which is unable to adapt, and

may negatively influence members' perceptions of team effectiveness.

Further, although centralized and hierarchical networks can be

advantageous for straightforward tasks, these advantages are

mitigated by the open‐ended nature of our task (search for clues in a

large environment). Our findings lend empirical evidence to the notion

that for more complex tasks that may change over time, open and

collaborative communication patterns are beneficial.
5 | DISCUSSION

A key tenet of this study is to explore the methodological and theoret-

ical implications of using temporal, process‐oriented methods to study

emergence in organizations. Whereas prior methods attempt to estab-

lish a causal link between characteristics and outcomes, in this

research, we consider the entire process of interaction. Consequently,
we directly utilize microprocesses that serve as the foundation for

emergence (Kozlowski, 2015; Kozlowski et al., 2013). Under the lens

of relational events, lower level interactions are no longer viewed as

elements of a broader phenomenon, but rather as realizations of pro-

cess itself (Van de Ven & Poole, 2005). Specifically, each interaction

is driven by the situational context, the attributes of the individuals,

and the preceding events (Leenders et al., 2015). In our study, we

examine the behavioral propensities that drive an individual to commu-

nicate; is it familiarity with the target, or a sense of reciprocity? More

generally, this methodology can answer nuanced questions about the

development of shared norms and practices. For instance, do individ-

uals tend to request information from physically proximal teammates

or perhaps teammates more like themselves? By asking these funda-

mental questions, we no longer focus on how actions form broader

phenomenon but rather focus on how action itself evolves. This

approach brings to light the concept of quality tendencies or propensi-

ties. In other words, are specific actions indicative of a high‐functioning

team, given the context for the event itself?



FIGURE 3 Interaction effects between information sharing and generative mechanisms. Notes. The horizontal axis is the information‐sharing score
provided by the focal individual. The vertical axis is the log likelihood of an individual sending an event, based solely on the value of the generative
mechanism. The solid line represents the above‐average case (e.g., high inertia), and the dashed line represents the below‐average case. For each
variable, we hold the other four generative mechanisms constant at their average value
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5.1 | Assessing process quality with the relational
event framework

In this study, we demonstrated how the relational event framework

could be applied to build and test theory about teams and organiza-

tions. We proposed two sets of research questions focused on how

temporal patterns of relational events were associated with common

indicators of process quality, coordination, and information sharing

(LePine et al., 2008). Research Question 1 asked about the relationship

between network centralization and coordination (R1a) and informa-

tion sharing (R1b). A centralized team structure involves a focal individ-

ual or individuals who are primarily responsible for coordinating the

group's efforts, while also contributing disproportionately to the norms

and practices of the system. Whereas teams with a centralized struc-

ture tend to be more efficient, decentralized organizational units are

often more adaptable to adverse conditions (Hollenbeck et al., 2002;

Hollenbeck et al., 2011). We assessed the degree of centralization by

determining how individuals exerted disproportionate influence on

the group dynamically, by both sending and receiving messages at
rates beyond that of the other members. The measure activity

captured the propensity for an individual to send messages, given their

prior volume of messages sent. The measure preferential attachment

captured the propensity for an individual to receive messages, on the

basis of their prior interactions.

We determined the relationship between perceived process

quality and behavior by analyzing the interactions between the

reported measures and the realized actions. In other words, we

assessed how likely an individual was to engage in communication pat-

terns associated with centralization, on the basis of their perceptions

of team coordination (R1a) and information sharing (R1b). We found

that those who view the team as being well coordinated have a stron-

ger negative propensity towards activity and preferential attachment

than have those who do not. Similarly, those who perceive the team

to be effective at sharing information also have a negative propensity

towards centralized behavior. Essentially, someone who believes the

team is functioning well is also less likely to increase their volume of

messages over time and is less likely to send messages to the most

central individual. This finding suggests that the more individuals act
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in a decentralized or democratic manner, the more likely they are to

perceive the team as having quality work process. Conversely, if an

individual dominates the conversation or feels that all their messages

are routed to a focal person, they are more likely to have a negative

view of the group.

Research Question 2 asked about the relationship between net-

work hierarchy and coordination (R2a) and information sharing (R2b).

Following Bunderson et al. (2016), we defined hierarchy as a network

topology of acyclical cascading flows that often indicate a division of

labor. This in contrast to hierarchy as power imbalance or ideology as

often indicated by critical organizational studies or hierarchy as steep-

ness or centralization. The three network processes associated with

hierarchy were (a) inertia, (b) reciprocity, and (c) triadic closure. Our

measure of inertia captured the propensity for an individual to send

messages to those whom they have sent the most messages to prior.

Conversely, reciprocity encapsulated the tendency for an individual to

respond to an increasing volume of received messages. Finally, triadic

closure captured the propensity for individuals to directly communicate

with others rather than through an intermediary. As defined, a strong

tendency towards inertia and triadic closure would indicate a calcifica-

tion of directed acyclical relationships, whereas a tendency towards

reciprocity would indicate more mutual relationships and a less hierar-

chical structure.

To assess the relationship between our dynamic mechanisms and

measures of coordination and information sharing, we again examined

the interaction between individual‐level perceptions and the levels of

each propensity. Our results partially supported Bunderson and col-

leagues on the functional benefits of acyclical hierarchy, because we

found that individuals tended to report higher levels of coordination

and information sharing when they created communication patterns

defined by higher inertia and higher transitivity, but also higher reci-

procity. Indeed, these results suggest that individual perceptions of

process quality are positively associated with strong, mutual relation-

ships among team members. Moreover, those who viewed the team

as being well coordinated and effective at information sharing were

more likely to directly communicate with other members, rather than

through a third party.

A key insight of our analysis is the relationship between behavioral

patterns and individual perceptions. Rather than treating a perceived

state as an outcome of an accumulation of actions (Cronin et al.,

2011), we instead claim that there is a continual feedback loop

between the emergent construct and the sequence of interactions

(Morgeson & Hofmann, 1999). Using the relational event framework,

we can develop temporal mechanisms that capture interaction

sequences, and investigate their relationships with emergence. One

such notable mechanism is inertia—or persistence as Butts (2008)

terms it—because it is a sequence that is specifically tailored for a

dynamic relational event framework. That is, without time, there is

no useful way to measure inertia in a relational state framework.

Indeed, every other structure measured in the current study can at

least be approximated in a relational state framework using exponen-

tial random graph models (see Lusher et al., 2013). Inertia, therefore,

deserves more theoretical treatment in the organizational and team lit-

erature. For instance, inertia is not far removed from larger sociological

notions theorized to reduce uncertainty and entropy in teams and
organizations. Several concepts from habitus (Bourdieu, 1990), onto-

logical security (Giddens, 1984), and institutional theory (DiMaggio &

Powell, 1983) all theorize on why actors create different patterns of

inertia, repetition, and consistency. Likewise, Kim, Oh, and

Swaminathan (2006) articulate the idea of network inertia, referring to

the tendency of organizations to renew ties to other organizations.

Like the current study, such inertia was positive, being viewed as net-

work management that can “generate synergies for the participating

organizations” (Kim et al., 2006, p. 705). The current study supports a

similar idea because it showed how inertia may create normative struc-

tures that induce positive perceptions of coordination and information

sharing.
5.2 | Theoretical implications

The results of the research suggest the promise of a more processual,

sequential, and microdynamic perspective regarding networks and

organizational behavior (e.g., Ahuja, Soda, & Zaheer, 2012). Indeed,

an event‐based framework has also been suggested in the communica-

tion (Hewes & Poole, 2012), group (Kitts, 2014), and management (Van

de Ven & Poole, 1995, 2005) literature, with interactions framed as an

unfolding series of events. After all, communication is inherently a pro-

cess defined by a complex series of events (Poole, 2012). The current

study focuses on relational events. A consequence of such an

approach is a theoretical shift because understanding relational events

“requires a theoretical framework and analytic foundation that incor-

porates the distinctive properties of such micro‐behaviors” (Butts &

Marcum, 2017, p. 52–53). That is, research may have to transition from

graph theory (i.e., the relational state approach) to process theory (see

Mohr, 1982; Van de Ven & Poole, 2005).

Put succinctly, process theory attempts to understand a series of

events and the mechanisms that link them together. As Poole (2012)

notes, three elements are generally ideal for sufficient process

theories:
(a) a description and explanation of the overall pattern

that characterizes the series (e.g., “the process follows

four stages, A, B, C, and D, because these stages are

logically required to get from the beginning of the

process to the end”); (b) a more microlevel account of

how one event leads to and influences subsequent event

in the series; and (c) an explanation of how event

transitions are related to the overall pattern. (p. 381)
Process theory is well suited for relational events because it chal-

lenges the researcher to theorize at the microlevel why one relational

event leads to the next, accounting for the larger pattern of interac-

tions (Quintane et al., 2013). Some recent studies have incorporated

events into the study of team dynamics. These include studying

emailing patterns in work teams (Zenk, Stadtfeld, & Windhager,

2010), contributions to open source software (Quintane et al., 2014),

and brokerage strategies (Quintane & Carnabuci, 2016; Spiro, Acton,

& Butts, 2013). What distinguishes our approach is an emphasis on

connecting event sequences to emergent properties of the team,

whereas the previously mentioned studies identify aspects of a pro-

cess that are predictive of future components of the process.
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As the current study demonstrates, in terms of the study of emer-

gence states, a framework grounded in process theory focuses on the

complex dynamics that give rise to emergent states. For instance, con-

sider a recent study of Google teams and the finding that psychological

safety is a key emergent state that plays a big factor in discriminating

between high‐ and low‐performing teams (Rozovsky, 2015). A process

theory of psychological safety would focus less on why psychological

safety helps teams perform better and more on the dynamics that

make psychological safety possible in the first place (i.e., the anteced-

ents, rather than outcomes). For example, the process of reciprocal dis-

closure seems like an obvious starting point to theorize on the drivers

of psychological safety. That is, when certain members self‐disclose

on various aspects (e.g., fears, values, goals, and secrets), if other team

members do not reciprocate in the next series of communication

sequences, a hypothesis could be formed that in such dynamic struc-

tures, psychological safety might be less likely to emerge. Indeed, a

variety of emergent states have been shown to influence team perfor-

mance (Kozlowski & Ilgen, 2006).

Theorizing on the different content, patterns, and styles of differ-

ent relational events can serve as a promising process‐oriented

approach to the study of organizational behavior. In particular, the cur-

rent results suggest that it may be time to go beyond asking if there is a

relationship between centralization, hierarchy, and emergent states, to

what direction(s) future theory and research might actually hypothe-

size. In other words, a more formal theory could explicitly develop

propositions as to why low levels of hierarchy and centralization are

related to perceptions of process quality. If the results replicate on a

different sample, then we could be more confident on understanding

the complicated nature of sequences of interaction.
5.3 | Practical implications

An important facet of the relational event framework is the ability to

identify behaviors that are differentially associated with emergent out-

comes. Consequently, some event sequences will be beneficial for

team functioning, whereas others may hamper performance. For

example, in our study, we demonstrated that frequent reciprocal

behavior was associated with greater perceived process quality,

whereas a stronger tendency towards preferential attachment has a

negative effect. However, structures may vary in effectiveness over

time depending on the task at hand (Hollenbeck et al., 2011). There-

fore, we posit that there is a balance to be struck between encouraging

certain activities while discouraging others to optimize the efficiency

of a team. Further, such an intervention must be motivated by the rel-

ative priority of various team objectives, which may change on the

basis of the work phase of the group (Marks et al., 2001).

As such, this begs the question of “what types of interventions can

shape and leverage dynamic relational event patterns?” or in other

words, how can leaders manage emergent phenomena (e.g., Guastello,

2002)? In the current case, the intervention must be a dynamic process

as well (i.e., requisite variety), rather than placing subjects in a fixed

network structure. A useful starting point would be to create interven-

tions that manipulate interaction norms, creating structures that nor-

malize when, to whom, and what to communicate is appropriate in

teams. For example, Postmes, Spears, and Cihangir (2001) manipulated
norms by creating dynamic pretask exercises. One team received a

consensus norm condition, where the pretask involved a more artistic

and casual undertaking (e.g., collaborating on making a poster). The

other half received a critical norm condition, where the pretask

involved a more deliberative and contentious assignment (e.g., articu-

lating a response to an unfavorable policy). As such, in a more critical

norm condition, teams may be more likely to “speak up” and create

decentralized relational event patterns because critical engagement is

encouraged and may be perceived of as a norm of team communica-

tion. Interventions such as these may serve as a fruitful starting point

for practical implications regarding the relationship between relational

events and emergent phenomena.
5.4 | Limitations

Although our study makes several contributions to research on organi-

zational dynamics, there are a few limitations that must be acknowl-

edged. First, the participants are trained military officers from various

NATO countries. On the one hand, this fact makes their reactions to

the game scenario more realistic, relative to how an actual team would

function in that situation. On the other hand, their behaviors are at

least in part shaped by their training and by norms of military commu-

nication, which may reduce the variability in interaction patterns. How-

ever, our methodology does find that there are distinct behavioral

trends across teams, which suggests that this limitation is at least par-

tially mitigated.

A second limitation concerns the length and nature of the task

performed. Although the planning stage was not limited in duration,

actual gameplay unfolded over only 1 hr, which is to a certain extent

an artifact of a laboratory environment. This relatively brief length of

time ensures that participants were not interrupted by outside distrac-

tions, nor were they able to develop characteristics of more mature

teams. Thus, although we can compare across experimental units, it

may be difficult to generalize to teams working over a longer timespan.

We also acknowledge that the task performed was specifically con-

cerned with information search and problem solving and did not incor-

porate many of the task types described in McGrath's (1984)

circumplex model. Consequently, our findings may not extend to

teams engaging in tasks such as creative idea generation or conflict

resolution.

Another limitation stems from the lack of context given to each

interaction. Our focus has been on the sequence and timing of per-

son‐to‐person interactions, without accounting for what was said in

the messages themselves. Future research could use a categorization

schema such as Bales (1950, 1999) to delineate different types of

interactions. Alternatively, it could be fruitful to classify messages per

the team process taxonomy proposed by Marks et al. (2001). Further,

participants communicated in a purely digital fashion, which may have

limited the possible modes of conveying emotion and meaning (Short,

Williams, & Christie, 1976). Although our content‐free approach did

indeed delineate between teams with various outcomes, incorporating

semantic and nonverbal information could produce further interesting

results.

Finally, although our measurement of interaction was dynamic, our

two measures of emergent states (coordination and information
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sharing) were static. It may be the case that there is a more compli-

cated reciprocal and dynamic relationship between the two. However,

beyond multiple survey panels, there remains difficulty at capturing the

emergence of attitudes in real time. Nevertheless, in the current study,

we would expect the team‐relevant emergent states to develop at the

end of the mission, when the survey was administered. Future

research might take advantage of more psychological ways to measure

emergent states (e.g., electroencephalography) to correlate dual

dynamic measurements of interaction and states.
6 | CONCLUSIONS

The emergence of group constructs is a temporal process, yet current

theories and methodologies in organizational behavior research often

do not fully incorporate time. To more accurately characterize team-

work dynamics, a process‐oriented paradigm is necessary. Following

the recent calls for more nuanced theories and methodologies in orga-

nizational behavior research, this study proposes a framework for

studying organizational behavior that is built on the foundation of

microlevel events. We operationalize work behaviors as sequences of

interactions, and use relational event modeling to determine the pro-

pensities of each normative pattern. Our findings from a set of 55 team

experiments suggest that various rates of interaction sequences are

associated with different outcomes, even though static descriptions

were not. This study advances organizational behavior research by

both developing a new theoretical approach and demonstrating the

efficacy of an associated statistical methodology.
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