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ABSTRACT 

Customers often compare and evaluate alternative products before making final choices. Understanding 

customer preferences in consideration decisions is, therefore, an important step for choice modeling in 

engineering design. While the existing literature has shown that the exogenous effects (e.g., products’ 

attributes and customers’ demographics) are deciding factors in customers’ consideration decisions, it is 

not clear how the endogenous effects (e.g., the inter-competitions among enterprises within a market) would 

influence customers’ consideration decisions in a market. In order to address this issue, this paper presents 

a network-based approach using a statistical network model, called Exponential Random Graph Model, to 

study customers’ consideration behaviors in supporting engineering design decisions. Our proposed 

network model is capable of characterizing the endogenous effects among products through various 

network structures (e.g., stars, triangles, etc.), and predicting whether customers would consider two 

products together (i.e., co-consideration), given the defined endogenous effects as well as the exogenous 

effects. In order to assess the performance of the proposed network model that considers endogenous 

effects, we compare it against the dyadic network model that only considers exogenous effects. Using the 

buyer survey data of China auto market in 2013 and 2014, we evaluate the goodness of fit and the predictive 

power of the two models at both the network level and the link level. The results show that our model has 
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a better fit and predictive accuracy than the dyadic network model that only considers exogenous effects. 

This underscores the importance of the endogenous effects on customers’ decisions at the consideration 

stage. The insights gained from this research help better understand the effects of market segmentation and 

product competition on customers’ consideration decisions, and better explain how endogenous effects 

interact with the endogenous effects in affecting the customers’ decision-making. 

Keywords: Complex networks, Exponential Random Graph Model, consideration behavior, choice 

modeling, customer preference, engineering design. 

1 INTRODUCTION 

Complex network modeling and simulation have shown its power in many engineering applications, such 

as the wireless network, sensor network, smart grids, supply chain, transportation systems, and many others. 

Recent developments in mathematical modeling techniques and computational algorithms to study complex 

networks have drawn the attention of many fields, including engineering design. Complex networks have 

been used in engineering design for the study of relational patterns, effective network visualization of 

associations of products, and modeling social interactions [1] and cross-level interactions between 

customers and products [2, 3]. In the design of complex products, network analysis has been used to 

characterize a product as a network of components that share technical interfaces or connections. Various 

network metrics, such as clustering coefficients and path length, are used to characterize the product 

structure and study the correlations between design quality and the product structure. Based on the network 

metrics, e.g., the centrality, Sosa et al. [4] defined three measures of modularity as a way to improve the 

understanding of product architecture. Recent work by Sosa [5] found that proactively managing the use of 

network structure (such as hubs) may help improve the quality of complex product designs. Network 

analysis has also been applied to studying designers’ network for understanding organizational behavior [6, 

7] and improving multidisciplinary design efficiency [8]. In this paper, instead of focusing on the product 

or the designer, we leverage complex network modeling and simulation techniques to study another key 

stakeholder in product design – the customer. We aim to leverage complex networks to study customer 
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preference in support of product design and development. Particularly, in this paper, we study customers’ 

consideration decisions by modeling product co-consideration relations – two products are concurrently 

considered in purchase by customers – as a complex network. 

2 BACKGROUND AND LITERATURE REVIEW 

Choice modeling predicts product demand and market share as a function of engineering design attributes 

and customer profiles in a target market [9]. Choice models have been integrated into design optimization 

to take account of customer preferences in supporting engineering design decisions [9-12]. Previous choice 

models mostly assume that customers have bounded rationality and have underlying utilities to rank 

alternatives in a consideration set – “a set of product alternatives available to an individual who will 

seriously evaluate through comparisons before making a final choice” [13]. A key step of constructing 

choice models is to determine the consideration set [14]. As Hauser et al. [15] indicated, “if customers do 

not consider your product, they can’t choose it.” 

From an enterprise perspective, understanding customer preferences in consideration is important for 

identifying crucial product features that customers are willing to pay for. Existing studies [16, 17] also 

revealed the consideration set phenomenon, i.e., the size of the consideration set tends to be much smaller 

(roughly 5-6 brands) than the total number of choices available in a market. As a result, small changes in 

individuals’ consideration sets (either size or options) may significantly transform the landscape of the 

overall market and reshape the competition relations in an existing market. Therefore, understanding 

customers’ preferences in consideration poses new opportunities to optimize product configurations, 

address customer needs, establish competitive design strategies, and make strategic moves such as branding 

and positioning. 

Managerial actions have been taken to influence customers’ consideration decisions directly, e.g., by 

changing brand accessibility [18] and by controlling usage and awareness [19]. However, quantitative 

studies on customers’ consideration decisions are challenging as consideration is an intermediate construct, 

not the final choice [15]. The decision context and a large amount of uncertainty alter decision rules. 
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Existing literature primarily focuses on inferring decision-rule heuristics [20-22], such as the cognitive 

simplicity rule [23], which has been shown to be effective in automobile and Web-based purchasing. There 

are three approaches to uncover consideration decision-rule heuristics [15]. The first approach only utilizes 

final choices and product features in the consideration set. It adopts a two-stage consider-then-choose 

decision process and infers model parameters using the Bayesian or maximum likelihood estimation. 

Typical methods include Bayesian [24], choice-set explosion [25-27], and soft constraints [28]. The second 

approach measures consideration through designed experiments in-vitro, similar to the choice-based 

conjoint analysis exercise [15]. Then the decision rules that best explain the observed consideration 

decisions are estimated with Bayesian [29] and machine-learning pattern-matching algorithms [30]. The 

third approach measures decision rules directly through self-explicated questions [31]. 

Despite the diversity of research on consideration sets, few studies have focused on understanding the 

underlying process of generating customer consideration sets. The connection between the formation of 

consideration sets and the driving factors is not well understood. Particularly, we know little about how the 

inherent market structure, including both the interdependence among existing products and association 

among customers, affects the consideration decisions. To address this research gap, we develop a network-

based approach to characterize customers’ consideration behaviors through modeling product co-

consideration relations. As shown in Figure 1, the key idea of the proposed network approach is to transform 

customer consideration sets into a product association network, in which nodes represent products and links 

represent the co-consideration between two products. As a result, the problem of understanding customer 

consideration can be addressed by predicting certain network structures as a function of association 

networks formed by product attributes and customer demographics. It is worth noting that as the link 

formation is an aggregation of customers’ decisions, the links (i.e., the co-consideration relations) imply 

the competition relations among products. Therefore, our approach enables us to study customer preference 

and market structure in an integrated manner. This is different from the studies in choice modeling (e.g., 

the monomial logit choice model [32]) that focus on establishing models for individuals. It is also worth 
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noting that our study is different from the agent-based models which hypothesize certain individual choice-

making rules [33]. Instead, our approach is data-driven, which leverages the empirical observed data to 

drive the establishment of co-consideration models and prediction analysis using the estimated model 

parameters. 

 

Figure 1. The research approach and the research focus 

Network approaches have been also extensively used in recommender systems recently [34-38]. 

Recommender system is frequently used to recommend products to customers based on what they searched 

(considered). From the network representation point of view, our approach has the similarities to the 

bipartite projection approach [39] in the recommender system research. However, the proposed network 

approach is distinct from the network-based recommender algorithms [37, 38] mainly in two aspects: First, 

the end goal is different. The recommender algorithms attempt to predict future likes and interests by 

mining data on past user activities. Common methods include the similarity-based methods (e.g., the 

collaborative filtering [38], content-based analysis [40], Dirichlet allocation [41], etc.) and the recently 

developed hybrid methods [36, 42]. The approach proposed in this paper relies on the network-based 

statistical inference model, which emphasizes deduction and explanation. It aims to provide an 

explanatory framework for customers' consideration behaviors, so that a feedback loop can be created from 

customer preference to engineering design. Therefore, the end goal of this study is to inform product design 

for larger market share. In such a context, prediction is used in this study for comparison and validation 

purposes. Second, the role of network in the modeling is different. In existing network-based recommender 

algorithms, the input takes various graph-based node-specific attributes (e.g., degree), which are essentially 

the exogenous factors, to generate the similarity metrics. In our approach, the model input can take into 
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account present network structures (e.g. triangles, loops), which represents the interdependencies among 

products, so that the effect of the inherent competition relations can be assessed. Such a capability supports 

better understanding on the consideration behaviors and could provide additional insights into the design 

research that has been primarily driven by users' preferences to engineering attributes. 

The current work builds upon our previous research efforts. In our recent study, Fu et al. [43] developed a 

two-stage bipartite network modeling approach to study customer preference in making choices by 

decoupling the choice-making process in two stages, the consideration stage and the choice-making stage. 

To understand the underlying relations between product/customer attributes and customers’ considerations, 

Wang et al. [44] utilized a dyadic network analysis approach (using multiple regression quadratic 

assignment procedure, MRQAP) to predict product co-consideration relations based on exogenous factors, 

such as product attributes and customer demographics. By mapping specific technological advancement 

(e.g., turbocharged techniques) to the change of products attributes, the authors also demonstrated how the 

model facilitates the forecast of the impact of technological changes on product co-consideration and 

market competition. 

In this paper, we take a further step to investigate the power of complex network modeling in understanding 

product co-consideration relations by considering both exogeous factors and endogenou factors, e.g., 

product interdependence and inherent market competition. The core technique is based on the exponential 

random graph model (ERGM) [45]. While dyadic network models like MRQAP are convenient to predict 

the associations between products based on exogenous factors, ERGM incorporates endogenous factors and 

as well as other network interdepencies [46].  

The research objective of this study is therefore two-fold: a) to establish the network-modeling framework 

that suppports the explanination of customer’s consideration behaviors and enables the prediction of future 

market competitions; b) to compare the ERGM and dyadic network model to examine if the inclusion of 

product interdependence through the endogenous network effects would better capture the dynamics 

underlying the formation of product co-consideration relations. The remaining of the paper has five 



7 
 

sections. Section 3 presents the research problem and introduces the method of constructing a product co-

consideration network. We also briefly provide the technical background of the dyadic network model and 

ERGM. Section 4 describes the vehicle case study and the data source. We present the estimation results of 

the dyadic model and ERGM, and illustrate how to use the attribute-related network structures to represent 

product interdependence, i.e., the endogenous effects. To evaluate the performance of each model, Section 

5 assesses model fit at both the global network level and at the local link level, and Section 6 evaluates the 

performance of each model in predicting future co-consideration relations. Finally, Section 7 presents the 

closing comments. 

3 NETWORK CONSTRUCTION AND INTRODUCTION TO NETWORK MODELS 

3.1 Network construction 

The product co-consideration network is constructed using data from customers’ consideration sets. The 

presence of a link (i.e., co-consideration) between two nodes (i.e., products) is determined by an association 

metric, called lift [47]. Equation (1) defines the lift value between products 𝑖 and 𝑗. Similar to pointwise 

mutual information [48], lift measures the likelihood of the co-consideration of two products given their 

individual frequencies of considerations. 

𝑙𝑖𝑓𝑡(𝑖, 𝑗) =
( , )

( )∙ ( )
 ,     (1) 

where 𝑃𝑟(𝑖, 𝑗) is the probability of a pair of products i and j are co-considered by customers among all 

possibilities, calculated based on the collected consideration data; and 𝑃𝑟(𝑖) is the probability of individual 

product i being considered. The 𝑙𝑖𝑓𝑡  value indicates how likely two products are co-considered by all 

customers at the aggregate level, normalized by the product popularity in the entire market. We use this 

probability of co-consideration, different from market share that is directly determined by the total 

purchases, to capture the competition between products. With the 𝑙𝑖𝑓𝑡 value, an undirected co-consideration 

network can be constructed using the following binary rule: 

𝐸 =
1,        𝑖𝑓 𝑙𝑖𝑓𝑡(𝑖, 𝑗) ≥ 𝑐𝑢𝑡𝑜𝑓𝑓
0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,   (2) 
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where cutoff is the threshold to determine the presence of a link 𝐸  between two nodes 𝑖 and 𝑗. Statistically, 

the 𝑙𝑖𝑓𝑡 value 1 indicates that two products are completely independent [44]; a lift value greater than 1 

indicates the two products are co-considered more likely than expected by chance. Based on the application 

context, research interest, and model requirement, different 𝑙𝑖𝑓𝑡 values greater than 1 can be used as the 

cutoff value. Equations (1) and (2) suggest that the network adjacency matrix is symmetric and binary. In 

this paper, the research is focused on predicting whether two products would have been co-considered or 

not. The extent of how often they are co-considered (reflecting the competition intensity) is not the research 

focus of this paper. This is why we made the decision of using binary network instead of weighted network. 

Modeling a binary network, while computationally simpler, is not as rich as the valued network. Hence, we 

tested the robustness of our findings by estimating multiple models based on varying the cutoff values of 

lift, the intensity of co-consideration relations. 

3.2 Research question in the network context 

Once a co-consideration network is constructed, the likelihood of customers considering two products can 

be formulated as the probability of a co-consideration link. For prediction purpose, this leads to the question 

of what factors (e.g., product attributes and customer demographics) drive the formation of a link between 

a pair of nodes, and how significantly each factor plays a role in the link formation process. The 

aforementioned research question is recast as how to build a network model to predict whether a co-

consideration link exists given the network structures, product attributes, and customer profiles. 

 

Figure 2. Two dependence assumptions underlying the co-consideration network 
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We posit that there are two decision-making scenarios underlying the co-consideration relations. The first 

scenario (Figure 2 on the left) assumes that each pair of products is independently evaluated by customers. 

Even for multiple alternatives in a consideration set, it treats the comparison of each two of these 

alternatives independent of other pairwise comparisons. The second scenario takes a more general 

interdependence assumption, where the formation of one co-consideration link is not independent of other 

co-consideration links. For example, in the right diagram of Figure 2, the likelihood of a co-consideration 

link between products A and B may be affected by the fact that they are both co-considered with product 

C. For the two aforementioned network models, the dyadic network model takes the simple independence 

assumption, while the ERGM assumes that all co-consideration relations sharing one node are 

interdependent. In this paper, we will examine whether the ERGM provides a more accurate understanding 

of the factors driving product co-considerations by evaluating the goodness of fit and the predicability of 

these two models. 

3.3 Introduction to network models 

The dyadic network model is analogous to the standard logistic regression element-wise on network 

matrices, where the model is given by: 

𝑙𝑜𝑔𝑖𝑡 𝑃𝑟 𝑌 = 1 = 𝜷𝑿(𝒏) = 𝛽 + 𝛽 𝑋
( )

+ ⋯ + 𝛽 𝑋
( ) .   (3) 

The response 𝑌  is the binary links 𝐸  between nodes 𝑖 and 𝑗 defined in Equation (2). The node attributes 

are converted to a vector of as dyadic variable, 𝐗( ) = (𝑥
( )

, … , 𝑥
( )

). Each dyadic variable measures the 

similarity or difference between pairs of nodes based on the attributes of nodes and a specific arithmetic 

function (see Table 1 for various dyadic variables). The dyadic network models use the dyadic variables X 

to predict the complex structures of the observed network composed of co-consideration links. The 

coefficients 𝜷 = (𝛽 , 𝛽 , … , 𝛽 )  indicate the importance of individual dyadic variable in forming a co-

consideration relation. Note that in this model, the probability of each link is evaluated independently. 
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3.3.1 Exponential random graph model 

Other than the dyadic attribute effects, in a network, many links connected to the same node have 

endogenous relations. That means the emergence of a link is often related to other links. The ERGM 

introduced by [49, 50] is well known for its capability in modeling the interdependence among links in 

social networks. For example, two people who have a common friend are more likely to be friends with 

each other too, and therefore the three-person friendship relations form a triangle structure. Specific network 

configurations, including edges, stars, triangles, cycles, etc., can be used to represent different types of 

interdependence. The ERGM interprets the global network structure as a collective self-organized 

emergence of various local network configurations. The logic underlying ERGM is that it considers an 

observed network, 𝒚, as one specific realization from a set of possible random networks, 𝒀, following the 

distribution in Equation (4) [45]. 

𝑃𝑟(𝒀 = 𝒚) =
𝜽′𝒈(𝒚)

(𝜽,𝒚)
 ,                                            (4) 

where 𝜽  is a vector of model parameters, 𝒈(𝒚)  is a vector of the network statistics and attributes, and 

𝜅(𝜽, 𝒚) = ∑ exp(𝜃′𝑔(𝑧))∈   is a normalizing quantity to ensure Equation (4) is a proper probability 

distribution. Equation (4) suggests that the probability of observing any particular network is proportional 

to the exponent of a weighted combination of network characteristics: one statistic 𝑔(𝑦) is more likely to 

occur if the corresponding 𝜃 is positive. Note that in ERGM, the network itself is a random variable and 

the probability is evaluated on the entire network instead of a link as it in Equation (3) for dyadic models. 

In brief, the advantages of using ERGM in the context of product co-consideration are three-fold: 1) using 

network configurations to characterize the endogenous effects among co-consideration links, 2) providing 

various dyadic variables to model different types of exogenous impacts of the product attributes, and 3) 

integrating both exogenous attribute effects and endogenous network effects in a unified framework. 

3.3.2 Exogenous dyadic variables and endogenous network effects 

The exogenous dyadic variables used both in the dyadic model and ERGM allow modeling of two types of 

effects between a pair of nodes with specific variables: the baseline effects of the attributes and the 
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homophily effects, i.e., the similarity or difference between the attributes of two nodes [44, 51]. In the 

context of the product co-consideration network, the baseline effects examine whether products with a 

specific attribute are more likely to be co-considered than products without that attribute, e.g., imported car 

models could be more likely to be co-considered as compared to domestic car models. The homophily 

effects examine whether two products with similar attributes tend to have a co-consideration link. For 

example, customers are more likely to consider and compare products with similar prices. The development 

of dyadic variables supports the study of inherent product competition beyond the understanding of 

customer preferences.  

Table 1 summarizes the guidelines of creating dyadic variables for different types of attributes such as 

binary, categorical, and continuous. For the product attributes under (a)-(c), the strength of the link 𝑋  is 

determined by the corresponding attributes 𝑥  and 𝑥  associated with the linked products. Beyond product 

attributes, we also introduce non-product related attributes (d). For example, customer demographics can 

be included in the model to allow the prediction of the impact of customers’ associations/similarities on 

product co-consideration relations. To create a dyadic variables related to customers’ attributes, multi-

variable association techniques, e.g., joint correspondence analysis (JCA) [52], have been used to compute 

the similarity of the customer-related attributes as the distance between two product points (𝑥  and 𝑥 ) in a 

metric space. In this paper, we follow the method presented in [53] to develop two categories of distance 

variables – the distance of customer perceived characteristics and demographic distance. The customer 

perceived characteristics are user proposed tags to indicate their perceptions of the products, such as 

youthful, sophisticated, and business-oriented. Customer demographics include income and family 

information of the user groups of each car models. The inclusion of customer associations through these 

distance-based dyadic variables is a unique feature of our network modeling approach.  

Table 1: Constructing explanatory dyadic attributes 

Configuration Statistic Dyadic effects 
(a) Binary product attributes 
Sum variable 𝑋 = 𝑥 + 𝑥   Attribute baseline effect 

Matching variable 𝑋 = 𝐼 𝑥 = 𝑥   Homophily effect 
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(b) Categorical product attributes 
Matching variable 𝑋 = 𝐼 𝑥 = 𝑥   Homophily effect 

(c) Continuous product attributes (standardized) 
Sum variable 𝑋 = 𝑥 + 𝑥   Attribute baseline effect 

Difference variable 𝑋 = 𝑥 − 𝑥   Homophily effect 

(d) Non- product related attributes 

Distance variable 𝑋 = 𝑥 − 𝑥   Homophily effect 

 𝐼{∙} represents the indicator function. 
 |∙| represents the absolute-value norm on the 1-dimension space. 
 || ∙ ||  represents the 𝐿 -norm on the n-dimension Euclidian space. 

Different from the dyadic models that can only consider exogenous dyadic effects, the ERGM supports the 

modeling of product interdependence regarding endogenous network effects. In this paper, we are 

particularly interested in two network configurations, the star-type interdependence and triangle-type 

interdependence [1]. The star structures (the left diagram in Figure 3) indicate that the probability of one 

focal product being co-considered with others is conditional on the number of existing co-consideration 

relations of that focal product (e.g., the node on the top in the figure has three co-consideration links). A 

positive star effect suggests that a product is more likely to be co-considered with another product if it is 

popular and already being co-considered with many others. The triangle structures (the right diagram in 

Figure 3) indicates that if two products are co-considered with the same set of other products, they are more 

likely to be mutually co-considered. Positive star effects could include stars with varying number of links 

(such as 2, 3, 4, 5 and perhaps many more). Likewise, a link could have many triangles by being linked 

with varying number of nodes (1, 2, 3, 4, 5, and perhaps many more). Both star and triangular effects imply 

multi-way product competition. To combine the effects of stars with multiple links and multiple triangles, 

we use two network configurations – the geometrically weighted degrees and the geometrically weighted 

edgewise shared partner, respectively  [54]. 

 

Figure 3. Two network configurations of co-consideration relations 

Star (Degree)

…

…

Triangle (Edgewise shared partner)
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4 CASE STUDY – MODELING VEHICLE CO-CONSIDERATION NETWORK 

4.1 Application context and data source 

When considering and purchasing a vehicle, customers make decisions on car models (e.g., Ford Fusion 

vs. Honda Accord), in part, based on their preferences for vehicle attributes  (e.g., price, power, and make) 

and their demographics (e.g., income, age, etc.). To understand the effects of these factors on co-

consideration relations among vehicle, we use data from a buyer survey in the 2013 China auto market. The 

dataset consists of about 50,000 new car buyers’ responses to approximately 400 unique vehicle models. 

The survey covered a variety of questions, including respondent demographics, vehicle attributes, and 

customers’ perceived vehicle characteristics. The respondents reported the car they purchased as well as 

the primary and secondary alternatives they considered before making the final purchase. These responses 

are used to construct the vehicle co-consideration network. The vehicle attributes reported in the survey are 

verified by vehicle catalog databases. 

4.2 Vehicle co-consideration network 

Following the method discussed in Section 3.1, we construct a vehicle co-consideration network with cutoff 

= 5 which results in a network of 389 nodes and 2,431 binary links. A smaller cutoff generated a denser 

network but had similar analytical results. We have tested our models using cutoff at 1, 3, 5, and 7 

respectively, and no significant changes in the trends of the model results are observed. Figure 4 shows an 

example of a partial vehicle co-consideration network with 11 car models. The node size is proportional to 

the degree, and colors indicate the clusters in which the vehicles are more likely to be co-considered with 

each other. The number on each link is the lift value indicating the strength of the co-consideration. 
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Figure 4. An example of partial vehicle co-consideration network  

Table 2 summarizes some descriptive network characteristics. For example, the average degree suggests 

that on average each vehicle has 12.5 co-considered vehicles and indicates the overall intensity of 

competition in the market. The clustering coefficient (CC), on the other hand, measures the cohesion or 

segmentation of the vehicle market [44]. The average local CC at values of 0.26 indicates the strong 

cohesion embedded in the network, and vehicle models are frequently involved in multi-way co-

consideration in the market. The descriptive network analysis facilitates the understanding of the auto 

market and provides guidelines on the selection of network configurations in ERGM.  

Table 2: Representative network characteristics of the generated co-consideration network  

Number of 
nodes 

Number of 
links 

Average 
degree 

Average path 
length 

Average local 
cluster coefficient 

389 2,431 12.5 3.34 0.26 

4.3 Descriptive statistics of the independent dyadic variables 

Many exogenous dyadic variables related to vehicle attributes, such as the difference and sum variables of 

car prices, engine power, fuel consumption, and matching variables of vehical’s market segments and make 

origin, could change the patterns of co-consideration among the vehicle models. We use infroamtion gain 

analysis to select 12 most important dyadic variables among all 22 possible dyadic variables. The log 

transformation (base 2) is applied to the price and engine power variables to offset the effect of large 

outliers. Table 3 shows the descriptive statistics of the independent variables.  
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Table 3. Descriptive statistics of independent variables for 389 car models in 2013 

 Mean (SD) Min Max 
Vehicle attributes 
Import (binary) 145 import & 244 domestic 
Price (log ) 17.61(1.34) 14.50 20.84 
Power (log ) 7.27(0.58) 5.25 8.76 
Fuel consumption (per 100 BHP) 6.61(1.62) 2.99 18.56 
Market segment (categorical) 17 car segments 

Make origin (categorical) 

13 American, 22 American-Chinese, 98 
Chinese, 90 European, 50 European-

Chinese, 31 Japanese, 54 Japanese-Chinese, 
11 Korean, 20 Korean-Chinese 

Vehicle attribute matching and difference 

Market segment matching 
10.1% pairs of cars co-considered are in the 

same segment 

Make origin matching 
16.5% pairs of cars co-considered have the 

same make origin 
Price (log ) difference  1.53 (1.12) 0 6.34 
Power (log ) difference 0.66 (0.49) 0 3.51 
Fuel consumption difference 1.71 (1.52) 0 15.58 
Customer association 
Distance of customers’ perceived characteristics 0.20 (0.13) 0 1 
Distance of customers’ demographics 0.27 (0.16) 0 1 

In total, six vehicle attributes, import status, price, engine power, fuel consumption, market segment, and 

vehicles’ make origin, are considered in the model. Import is a binary variable describing whether a car is 

imported (import = 1, 37.3%) or domestically produced (import = 0, 62.7%). As suggested in Table 1 and 

Section 3.3.2, we construct a sum dyadic variable of import to account for its baseline effect of whether 

each paired cars are both imported (value 2 for 13.90% of the pairs), one imported and one domestic (value 

1 for 46.76%), or both domestic (value 0 for 39.34%). If the baseline effect of the import attribute is positive, 

the coefficient of the sum variable of import should be positive as well, i.e., the higher the sum value of the 

two car models, the more likely they are co-considered together. Similarly, the sum variables of price (in 

RMB and transformed using log ) and power (in brake horsepower BHP and transformed using log ) 

describe the baseline effects of price and power on product co-consideration relations. We construct a 

variable, fuel consumption, by dividing litres of gasoline each vehicle consumed per 100 kilometers over 

vehicle power (in 100 BHP). As such, the smaller this value, the more fuel-efficient a car model is. The 

difference variables of price, power, and fuel consumption capture the homophily effects, which are used 
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to test if the car models with similar attributes (smaller differences) are more likely to be co-considered 

together.  

The auto industry is very competitive, so most car models have very clearly targeted customers and compete 

in a specific market segment. Since vehicle’s market segment is a categorical variable, we use a dyadic 

matching variable in the model to investigate whether two cars from the same segment would affect their 

co-consideration patterns. The top 3 in all 17 segments in our sample are the C-Class Sedan (21.6% of car 

models), B-Class Sedan (11.3%), and Small Utility (11.1%). Similarly, make origin is also a categorical 

variable, and it describes the region where the car brand originates. Our dataset shows that 90, 31, 11, and 

13 car models are made in Europe, Japan, South Korea, and the United States, respectively. While 98 car 

models are produced in China with local brands, other local-foreign joint venture brands come from Europe 

(50), Japan (54), South Korea (20), and the United States (22). The matching variables of market segments 

and make origins are used to account for people’s homophily behavior of comparing cars with the same 

brand and origin.  

4.4 Model implementation using ERGM 

Table 4 shows the estimated coefficients and corresponding odds ratios from fitting the dyadic and ERGM 

models. Other than the variables described above, the ERGM includes three additional variables associated 

with network configurations. The edge variable controls the number of links to ensure the estimated 

networks have the same density as the observed one. Conceptually, if we have no knowledge about the 

cars’ attributes or their co-consideration relations, the edge estimates the likelihood that two cars will be 

co-considered randomly, like an intercept term in a regression or a “base rate”. The star effect and triangle 

effect discussed in Section 3.3.2 are measured by geometrically weighted degree and the geometrically 

weighted edgewise shared partner, respectively. According to the ERGM, most vehicle attributes, except 

the price baseline effect and power difference, are statistically significant (p-value < 0.001) and therefore 

play important roles in vehicle co-consideration. For instance, two vehicles with smaller differences in price 

and fuel consumption are more likely to be co-considered. If the price of one car model is twice the price 
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of another car, their odds of co-consideration is only 45% of the odds of two cars with the same price. 

Similarly, one liter per 100km per 100 BHP difference in fuel consumption leads to 93% of the odds of co-

consideration compared to the cars with the same fuel consumption. For the matching of vehicle attributes, 

two vehicles in the same market segment are 1.94 times more likely to be co-considered than the ones in 

different segments, and two vehicles with the same make origin are 1.69 times more likely to be co-

considered than the ones with different origins. Finally, the negative coefficient for the distance of 

customers’ demographics shows that customers with different demographics are less likely to co-consider 

the  same vehicle. In summary, the results show that customers are more likely to consider cars with similar 

perceived features, such as price, fuel consumption, market segment and make origin. 

As shown in Table 4, the coefficient of the triangle effect is 0.70 (p-value < 0.001). The positive sign 

indicates that two vehicles co-considered with the same set of vehicles are more likely to be co-considered 

with each other. It implies that a form of multi-way grouping and comparison exists in customers’ 

consideration decisions, i.e. product alternatives in a person’s consideration set are considered as the same 

time. On the other hand, the positive coefficient of the star effect (inversely measured by  geometrically 

weighted degree) indicates that most of the cars tend to have a similar amount of co-consideration links. 

With these endogenous network effects, the ERGM significantly improves the model fit compared to the 

dyadic model as indicated by the improvement of BIC from 16,005 to 14,021. In the next section, we 

perform a systematic comparative analysis to evaluate how well the simulated networks match the observed 

vehicle co-consideration network. 

Table 4: Estimated coefficients and odds ratios of the dyadic model and ERGM 

 Dyadic Model ERGM 
Input variables Est. coef. Odds Est. coef. Odds 

Network configurations of product interdependence 
Edge / Intercept -14.36** 0.00 -13.71** 0.00 
Star effect (inverse measure)    1.97** 7.20 
Triangle effect    0.70** 2.01 
Baseline effects of vehicle attributes 
Import  0.37** 1.45  0.11** 1.11 
Price (log ) -0.02 0.98 -0.007 1.01 
Power (log )  0.68** 1.97  0.35** 1.42 
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Fuel consumption (per 100 BHP)  0.19** 1.21  0.12** 1.13 
Homophily effects of vehicle attribute matching and difference 
Market segment matching  1.38** 3.98  0.66** 1.94 
Make origin matching  1.28** 3.60  0.53** 1.69 
Price difference (log ) -1.75** 0.17 -0.80** 0.45 
Power difference (log )  0.08 1.09  0.13 1.14 
Fuel consumption difference -0.08* 0.92 -0.07** 0.93 
Homophily effects of customer association  
Distance of customers’ perceived characteristics. -0.42 0.66 -0.31 0.74 
Distance of customers’ demographics -0.57** 0.56 -0.37* 0.69 
Model performance 
Null deviance 104,618 
Bayesian Information Criterion (BIC) 16,005 14,021 

Note: * p-value < 0.01,** p-value < 0.001 

5 MODEL COMPARISON ON GOODNESS OF FIT 

A goodness of fit (GOF) analysis is performed to compare the model fit of dyadic and ERGM models. 

Using the dyadic and ERGM models in Equations (3) and (4), respectively, and based on the estimated 

parameters in Table 4, we compute the predicted probabilities of co-consideration between all pairs of 

vehicle models. The links with predicted probabilities higher than a threshold (e.g., 0.5) are considered as 

links that exist. Once the synthetic networks are obtained from both models, we compare them against the 

real 2013 co-consideration network at both the network level and the link level. The network level 

evaluation uses the spectral goodness of fit (SGOF) metric [55]; while the link level evaluation uses various 

accuracy measurements, such as precision, recall, and F scores (see Section 5.2 for more details).  

5.1 Network-level comparison 

Spectral goodness of fit (SGOF) is computed as: 

𝑆𝐺𝑂𝐹 = 1 −
̅ ,

̅ ,
 ,    (5) 

where 𝐸𝑆̅𝐷 ,  is the mean Euclidean spectral distance for  the fitted model while 𝐸𝑆̅𝐷 ,  is the 

mean Euclidean spectral distance for  the null model, i.e., the Erdős–Rényi (ER) random network in which 

each link has a fixed probability of being present or absent. Hence, SGOF measures the amount of the 

observed structures explained by a fitted model, expressed as a percent improvement over a null model. 

The Euclidean spectral distance computes the 𝐿  norm (also called Euclidean norm) of the error between 
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the observed network and all 𝑘 simulated networks, i.e., ‖𝝐 ‖, where error 𝝐 is the absolute difference 

between the spectra of the observed network (𝝀 ) and that of the simulated network (𝝀 ), i.e., 

𝝀 − 𝝀 . Since the calculation of the spectra 𝝀 requires eigenvalues of the entire network’s adjacent 

matrix, this evaluation is performed at the network level. When the fitted model exactly describes the data, 

SGOF reaches its maximum value 1. SGOF of zero means no improvement over the null model. The SGOF 

metric provides an overall comparison of different models. It is especially useful when a modeler is not 

clear about which network structural statistics are important in explaining the observed network. For 

example, in our co-consideration network, it is hard to tell which network metrics, such as the average path 

length or the average CC, are more important to the understanding of market structure. Under this 

circumstance, the SGOF provides a simple yet comprehensive evaluation. Table 5 lists the SGOF scores of 

both dyadic model and the ERGM. Based on 1,000 predicted networks from each model, the results of the 

mean, 5th, and 95th percentile of SGOF show that the ERGM significantly outperforms the dyadic model. 

Table 5: Spectral goodness of fit results of the dyadic model and ERGM 

 Dyadic model ERGM 
Mean SGOF (5th percentile, 95th percentile) 0.37 (0.31, 0.43) 0.63 (0.48, 0.76) 

5.2 Link-level comparison 

In addition to the network-level comparison, the predicted networks are also evaluated at the link level. We 

define a pair of vehicles with a co-consideration relation as positive, whereas the ones without links as 

negative. Therefore, the true positive (TP) is the number of links predicted as positive and also positive in 

the observed network; the false positive (FP) is the number of links predicted as positive but actually 

negative, i.e., wrong predictions of positives. Similarly, the true negative (TN) is the number of links 

predicted as negative and observed as negative; the false negative (FN) is the number of links predicted as 

negative but observed as positive. Taking 0.5 as the threshold of predicted probability (as it is used in the 

logistic function), we calculate the following three metrics to evaluate the performance of prediction for 

both dyadic model and ERGM. Precision is the fraction of true positive predictions among all positive 

predictions; recall is the fraction of true positive predictions over all positive observations; F score is the 
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harmonic mean of precision and recall (see Table 6 for the formulas). These metrics are adopted because 

each of them reflects the capability of the model from different perspectives. It could be the case where the 

model predicts many links (e.g., all links are predicted in extreme cases and FP is high) so that the precision 

is low and the recall is high, while another model could preict very few links that leads to high FN, and 

thereforehigh precision and low recall. Therefore, using either precision or recall only partically reveals 

the model performance.  Hence F score is often recommended as a fair measure because it considers both 

precision and recall and provides an average score. In this study, we use all three metrics together to provide 

a complete picture of the model performance. 

Table 6: Results of various metrics for link-level comparison (predicted links based on threshold at 0.5) 

Metrics Dyadic model ERGM 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 0.594 0.543 
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 0.042 0.311 

𝐹 =
(1 + 𝛽 ) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

𝐹 . = 0.162 
𝐹 = 0.078 
𝐹 =  0.051 

𝐹 . = 0.473 
𝐹 = 0.396 
𝐹 =  0.340 

As shown in Table 6, almost all performance metrics suggest that ERGM outperforms the dyadic model. 

In particular, the recall of ERGM is significantly higher than that of the dyadic model. The dyadic model 

is only able to predict about 4.2% of co-consideration; whereas the recall of the ERGM can reach 31.1%. 

These results imply that the inclusion of product interdependence in ERGM indeed improves the model fit 

and better explains the observed product co-consideration relations. The only metric for which the dyadic 

model has a better value is the precision. At the threshold of probability is equal to 0.5, the dyadic model 

only predicted 170 links as positive in total, and 101 of them were correct. The small denominator in the 

precision formula, i.e., TP+FP=170, produces a larger precision.  

Since different thresholds of the predicted probability will affect the value of precision and recall,In order 

to get a more comprehensive understanding, we evaluate the precision-recall curve [56] by altering the 

threshold from 0 to 1. The model that has a larger area under the curve (AUC) performs better [57]. When 

evaluating binary classifiers in an imbalanced dataset (with many more cases of one value for a variable 

than the other), which is the case here, Saito and Rehmsmeier [57] have demonstrated that the precision-
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recall curve is more informative than other threshold curves, such as the receiver operating characteristic 

(ROC) curve1. Figure 5 shows that for any given recall value, the precision of ERGM is strictly higher than 

that of the dyadic model and the ERGM outperforms the dyadic model in the full spectrum of the threshold 

of probability. 

 

Figure 5. The precision-recall curve of the dyadic model and ERGM with random network benchmarked 

In summary, the comparisons at both the network level and the link level validate our hypothesis that the 

product interdependence, i.e., the endogenous effect, plays a significant role in the formation of product co-

consideration relations, and hence the customers’ consideration decisions. In the next section, we examine 

the predicative power of the two models. 

6 MODEL COMPARISON ON PREDICABILITY 

In this section, we take a further step to compare the two models in terms of the predictability. We use the 

models developed with the 2013 dataset (i.e., the model coefficients shown in Table 4) to predict the vehicle 

co-consideration relations in the 2014 market. From an illustrative example in Figure 6, we can see some 

car models (e.g., node 4) withdrew from the market in 2014, some new car models (e.g., node 6 and node 

7) were introduced to the market, but most of the car models (e.g., nodes 1, 2 3, and 5) remained in the 

                                                      
1 We also studied the ROC curve, and drew the same conclusions  
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2014 market. In this paper, we focus on predicting the future co-considerations among the overlapping 

models in two consecutive years since the new models may introduce critical features not captured in the 

previous market, such as electric cars. In our study, 315 car models were available in both 2013 and 2014. 

Therefore, the task here is to predict whether each pair of cars among these 315 car models will be co-

considered in 2014 given their new vehicle attributes in 2014, the new customer demographics, existing 

market competition structures2, and the model coefficients estimated based on the 2013 data. 

 

Figure 6. Illustration of the evolution of the co-consideration network 

Most pairs of cars have the same dyadic status (i.e., co-considered or not) in 2013 and 2014. For example, 

if two car models were not co-considered in 2013, customers continued to not co-consider these two in 

2014. This case is not of interest because predicting nonexistence is much easier due to the imbalance nature 

of the network dataset and it does not provide new insights. Similarly, the persistent co-consideration in 

both 2013 and 2014 is also expected. Therefore, we focus on changes in two prediction scenarios: 

emergence and disappearance of co-consideration links from 2013 to 2014. As shown in Table 7, among 

47,724 pairs of cars that were not co-considered in 2013, 1,202 pairs were considered in 2014. The event 

of changing from not being co-considered to being co-considered indicates the change of market 

competition potentially caused by the change of vehicle attributes such as prices. On the other hand, 1,731 

pairs of cars were co-considered in 2013 among the 315 car models, but 1,087 pairs were no longer co-

considered in 2014. We indicate the two cases in the last column of Table 7 where the predictions of 2014 

network using 2013 model are the events of interest. The two “Yes” cases, predicting emerging co-

consideration and disappearing co-consideration links, both represent the change of co-consideration status 

                                                      
2 The market competition structure is captured by the model coefficients of the three network 
configurations including the edge, star effect and triangle effect discussed in Section 4.4.  
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from 2013 to 2014 and are the positive outcomes of model predictions. Such predictions are more difficult 

(yet substantively more useful) to attain than the other two “No” cases of no-change. By testing both the 

dyadic and ERGM models, we examine which model had better predictive capability, assuming that the 

driving factors and customer preferences of co-consideration characterized by the model coefficients in 

Table 4 are unchanged from 2013 to 2014. 

Table 7. Prediction scenarios of interest 

Prediction 
scenarios 

Year 2013 Year 2014 
Events of 
interest 

Emergence of co-
consideration 

47,724 pairs of cars not 
co-considered 

1,202 pairs of new co-
consideration 

Yes 

46,522 no change No 

Disappearance of 
co-consideration 

1,731 pairs of cars co-
considered 

1,087 pairs no longer co-
considered 

Yes 

644 no change No 
 

In both prediction scenarios, we input the new values of vehicle attributes and customer profile attributes 

from 2014 into the model. When using ERGM, characteristics of network configurations calculated based 

on the 2013 data also served as inputs for prediction. Once the models predict the probability of each pair 

of car models, we evaluate the performance metrics separately in two scenarios: 1) the precision and recall 

of predicting emerging co-consideration among the 47,724 pairs of not co-considered car models, and 2) 

the precision and recall of predicting the disappearance of co-consideration among 1,731 pairs of cars co-

considered in 2013. The precision and recall of predictions are calculated similarly to the ones used in 

Section 5.2. The precision score is the ratio of the number of correctly predicted links (such as corrected 

prediction of emerging co-consideration or disappeared co-consideration) over the number of predictions a 

model makes. The recall score is the ratio of the number of correctly predicted links over the number of 

events of interest (true emerging co-consideration or disappeared co-consideration in 2014).  

Table 8 shows the results of the prediction precision and recall calculated based on the predicted probability 

of 0.5 as the threshold in the two scenarios. To predict emerging co-consideration, the ERGM had much 

better performance than the dyadic model. Specifically, the dyadic model tends to be over-trained based on 

vehicle attributes and only predicts a small set of most likely links, i.e., 9 of the 1,202 emerging new co-
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consideration relations. On the other hand, the ERGM predicted 111 (more than ten times) emerging co-

consideration with the same precision. With the probability threshold of 0.5, the ERGM and dyadic model 

had similar differences in performance in predicting disappearing co-consideration links. The following 

Figure 7(b) shows that ERGM outperforms the dyadic model in almost all points of the precision-recall 

curve. In fact, the PR curves (Figure 7) show that ERGM at the entire range of the threshold outperforms 

the dyadic model in both prediction scenarios. 

Table 8. The prediction precision and recall at the threshold of 0.5 in two prediction scenarios 

Prediction 
scenarios 

Model 
# Events 

of interest 
(TP+FN) 

# Predictions 
(TP+FP) 

# Correct 
predictions 

(TP) 

Prediction 
precision 

Prediction 
recall 

Prediction 
𝐹   

1 
Dyadic 

1202 
36 9 0.250 0.0075 0.015 

ERGM 442 111 0.251 0.092 0.135 

2 
Dyadic 

1087 
1654 1076 0.651 0.990 0.785 

ERGM 1183 860 0.727 0.791 0.758 
 

Therefore, we conclude that the ERGM has better predictability than the dyadic model. In addition to the 

GOF fitness test, the prediction test described above further validates our assumption that taking 

interdependencies in network modeling better explains the co-consideration network. In this particular case 

study, the analyses performed in both GOF and prediction tests indicate that vehicles’ co-consideration 

relations are influenced by their existing competitions in the market. 

    

(a) Predict emerging co-consideration  (b) Predict disappeared co-consideration 
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Figure 7. Prediction PR curves of dyadic model and ERGM in two prediction scenarios 

7 CLOSING COMMENTS 

In this paper, we propose a network-based approach to study customers’ preferences in consideration 

decisions. Specifically, we apply the lift association metric to convert customers’ considerations into a 

product co-consideration network in which nodes present products and links represent co-consideration 

relations between products. With the created co-consideration networks, we adopt two network-modeling 

techniques, the dyadic model and the ERGM, to predict whether two products would have a co-

consideration relation or not. Using vehicle design as a case study, we perform systematic studies to identify 

the significant factors influencing customers’ co-consideration decisions. These factors include vehicle 

attributes (price, power, fuel consumption, import status, make origin, and market segment), the similarity 

of customer demographics, and existing competition structures (i.e., the interdependence among co-

consideration choices captured by network configurations). Statistical regressions are performed to obtain 

the estimated parameters of both models, and comparative analyses are performed to evaluate the models’ 

goodness of fit and predictive power in the context of vehicle co-consideration networks. Our results show 

that the ERGM outperforms the dyadic model in both GOF tests and the prediction analyses. This paper 

makes two contributions relevant to engineering design: a) a rigorous network-based analytical framework 

to study product co-consideration relations in support of engineering design decisions, and b) a systematic 

evaluation framework for comparing different network modeling techniques regarding GOF and prediction 

precision and recall. 

This study provides three practical insights on co-consideration behavior in the China auto market. First, 

the customers are price-driven when considering potential car models. Both models suggest significant 

homophily effects of vehical prices and customer demographics in forming co-consideration links, i.e., car 

models with similar prices and targeting to similar demographics such as income and family size are more 

likely to be considered in the same consideration set. However, the ERGM reveals much more influencial 

drivers, such as the homophily effects of car segments and make origins. These findings comfirm the 
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internal clusters in the auto market. Second, the ERGM model suggests that there were significantly fewer 

star strucutres but much more triangles in the co-consideration network. Beyond the impacts of the vehicle 

and customer attributes, ERGM also illustrates car models that received an equal amount of consideration 

and those that were likely to get involved in multi-way co-consideration. Third, the model comparisons 

with the goodness of fit analysis and prediction scenarios demonstrate that a network modeling approach 

that captures the interdependence of co-consideration, e.g., the ERGM approach, helps improve the 

predictability of product co-considerations. 

Finally, having an analytical model in this application context could boost future explorations including the 

what-if scenario analysis that aims to forecast market responses under different settings of existing product 

attributes, as demonstrated in [44]. Since ERGM has a better model fit and predictability, it will help make 

more accurate projections on the future market trends and aid the prioritization of product features in 

satisfying customers’ needs as well as supporting engineering design and product development. In the 

future, we plan to extend the network approach to a longitudinal weighted network-modeling framework, 

which not only predicts the existence of a link but also the strength of the co-consideration between car 

models in future years. The weighted network models would help discover the nuance in different 

customers’ consideration sets and therefore provide more in-depth insights for product design and market 

forecasting. 
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