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ABSTRACT 

Motivated by overcoming the existing utility-based choice modeling approaches, we present a novel conceptual 

framework of multidimensional network analysis (MNA) for modeling customer preferences in supporting design 

decisions. In the proposed Multidimensional Customer-Product Network (MCPN), customer-product interactions are 

viewed as a socio-technical system where separate entities of “customers” and “products” are simultaneously modeled 

as two layers of a network, and multiple types of relations, such as consideration and purchase, product associations, 

and customer social interactions, are considered. We first introduce a unidimensional network where aggregated 

customer preferences and product similarities are analyzed to inform designers about the implied product competitions 

and market segments. We then extend the network to a multidimensional structure where customer social interactions 

are introduced for evaluating social influence on heterogeneous product preferences. Beyond the traditional 

descriptive analysis used in network analysis, we employ the Exponential Random Graph Model (ERGM) as a unified 

statistical inference framework to interpret complex preference decisions. Our approach broadens the traditional 

utility-based logit models by considering dependency among complex customer-product relations, including the 

similarity of associated products, “irrationality” of customers induced by social influence, nested multi-choice 

decisions, and correlated attributes of customers and products.  

 

1. INTRODUCTION 

Understanding customer preferences, interests, and needs is critically important in developing successful products 

(Ulrich, 2003). In the past decade, the theory of decision-based design and various preference modeling techniques 

have been continuously developed for this purpose (Shiau and Michalek, 2009, Frischknecht et al., 2010, Morrow et 

al., 2014, Chen et al., 2013). However, analytical modeling of customer preferences in product design is inherently 
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difficult as it faces challenges in modeling heterogeneous human behaviors, complex human interactions, and a large 

variety of product offerings. Motivated by overcoming the existing utility-based choice models, we propose a novel 

multidimensional network analysis (MNA) approach, rooted in social network analysis for modeling complex 

customer-product relations. The focus of this paper is on presenting the conceptual framework of the proposed 

Multidimensional Customer-Product Network (MCPN) together with the development of Exponential Random Graph 

Model (ERGM) for preference data analysis. By using the network approaches developed in this paper, designers 

could, in principle, gain a better insight into the customers’ desires and preferences, the market structures, the 

competitive landscape, the strength of social influence, and the key attributes of their own and their competitors’ 

products. In new product development and future strategic planning, the constructed network model can be used to 

identify the right product configurations for targeted group of customers in a new market. 

In recent years, disaggregate quantitative models such as Discrete Choice Analysis (DCA) (Ben-Akiva and 

Lerman, 1985, Train, 2009) have been widely studied by the engineering design research community for consumer 

preference modeling. Following the random utility theory, the customer purchase decision is captured by a utility 

function of product attributes/features and customer attributes (e.g., social demographic and usage attributes) (Hoyle 

et al., 2010, He et al., 2012). Even though DCA provides a probabilistic approach for modeling customer heterogeneity, 

there are several major obstacles regarding their use in practical design applications: 

‒ Dependency of Alternatives. Standard logit models usually ignore correlations in unobserved factors over 

product alternatives by assuming observations are independent, i.e., whether a customer chooses one product is 

not influenced by adding or substituting another product in the choice set. This is also known as the Independence 

of Irrelevant Alternatives (IIA) property, whose implication is not realistic for applications with similar product 

offerings. Though advanced logit models have been developed to address this issue by introducing certain 

correlation structures among the error terms, they cannot accommodate any dependent decisions explicitly. 

‒ Rationality of Customers. The utility-function based choice modeling approach assumes customers make 

rational and independent decisions. However, in reality customers influence each other, and their socially 

influenced decisions can sometimes be considered “irrational.” As such, it is reasonable to expect that social 

effects, such as geographical proximity, communication ties, friendship connections, and social conformity have 

large influences on customer attitude and behavior. 

‒ Correlation of Decisions. Correlated decisions often exist, such as in forming a consideration set.  It is 

important to realize that decisions in such situation are often nested within one another. For example, the decision 

of how many products and what products to consider could be nested. Unfortunately, classical regression models 

ignore these correlations, and therefore, cannot estimate the influence of correlated decisions.    

‒ Collinearity of Attributes. To evaluate the underlying preference for each product attribute (feature), it is often 

desirable that preference data used for modeling has little to no collinearity. However, revealed preference data is 

very vulnerable to collinearity as the data is drawn directly from the real market. For example, low price vehicles 

are more possible to have smaller engine capacity and as a result, low fuel consumptions. However, it is hard to 

tell whether customers are buying cars because they are low price or because they are fuel efficient. The presence 
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of collinearity implies that the contribution of each attribute is difficult to evaluate separately using utility-based 

logit models. 

Our goal in this work is to overcome the limitations of existing quantitative methods for modeling customer 

preferences in engineering design. We aim to develop a preference model that broadens the utility-based DCA by 

considering complex customer-product relations, including the similarity of associated products, “irrationality” of 

customers induced by social influence, nested multi-choice decisions, and correlated attributes of customers and 

products. To this end, we propose a novel Multidimensional Customer-Product Network (MCPN) framework as shown 

in Fig. 1. As seen, customer-product interactions form a complex socio-technical system (Trist, 1981), not only 

because there are complex relations between the customers (e.g., social interactions) and amongst the products (e.g., 

market segmentation or product family), but also because there exist multiple types of relations between customers 

and products (e.g., “consideration” versus “purchase”). Our research premise is that, similar to other complex systems 

exhibiting dynamic, uncertain, and emerging behaviors, customer-product relations should be viewed as a complex 

socio-technical system and analyzed using social network theory and techniques. The structure and topological 

characteristics identified in customer-product networks can reveal emerging patterns of customer-product relations 

while taking into account the heterogeneities among customers and products. 

 

 

Figure 1：Customer-Product Relations as a Complex Network System, with Five Types of Relations and Two Types 

of Nodes 

In literature, network analysis has emerged as a key method for analyzing complex systems in a wide variety of 

scientific, social, and engineering domains (Wasserman and Faust, 1994). The approach provides visualization of 

complex relationships depicted in a network graph, where nodes represent individual members and ties/links represent 

relationships between members. Built upon conventional network analysis, social network analysis views social 

relations in terms of network theory, and the links in the observed network are explained by the underlying social 

Purchase decision
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Social interaction

Feature association

Preference association
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processes such as self-interest, collective action, social exchange, balance, homophily, contagion, and co-evolution 

(Monge and Contractor, 2003). 

Most existing applications of network analysis are unimodal or unidimensional that contain a single class of nodes 

(either human or non-human artifact) and a single type of relation. For example, our previous research characterizes 

customer consideration preferences over a decision set of products through a unidimensional product association 

network, where the link represents the customer consideration decision and the node represents the product offering. 

Even though the analysis of unidimensional network structures have been used in our early research to understand 

product competitions (Wang et al., 2015), and predicting heterogeneous choice sets using Discrete Choice Analysis 

(Wang and Chen, 2015), the preference analysis can only be performed in the aggregated level representing the average 

preference decision across the customer population. A more complex structure is the bipartite network, which contains 

both human and non-human technological elements as nodes, and a single type of relation connecting the two sets of 

nodes. With the addition of the second types of node (consumer) into the network, researchers can model preferences 

at the disaggregated individual level as opposed to the aggregated group level preferences studied in our previous 

work (Wang et al., 2015, Wang and Chen, 2015). In literature, recent social network researchers put more emphasis 

on the development of multidimensional networks (Contractor et al., 2011), which include multiple types of nodes, as 

well as multiple types of relations represented by non-directed or directed links at multiple levels. It has been 

recognized that the multidimensional structures can be useful in studying how technologies can simultaneously shape 

and be shaped by the social structures into which they are introduced, because technology and people are modeled in 

two separate layers of a network. On one hand, the social structures can influence how people conceive a new 

technology (or a product), as well as whether and how they will use it (Rice and Aydin, 1991, Karahanna et al., 1999, 

Kraut et al., 1998). On the other hand, new technologies (or products) could bring changes to social and 

communication relationships among people (DiMaggio et al., 2001). To the authors’ knowledge, this paper represents 

the first attempt to introduce multidimensional network analysis into engineering design. The complex customer-

product interactions are represented as a multidimensional network where multiple relationships are considered, 

including social network relations among customers, association relations among products, as well as preference 

relations between customers and products.  

 

Figure 2：Development of Network Structures 

Beyond most existing network analyses that are descriptive in nature, our research introduces the Exponential 

Random Graph Model (ERGM) as a unified statistical inference framework for MNA. ERGM is increasingly 

recognized as one of the central approaches in analyzing social networks (Lusher et al., 2012, Robins et al., 2007, 

Wang et al., 2013). ERGMs account for the presence (and absence) of network links and thus provide a model for 

unidimensional bipartite multidimensional
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analyzing and predicting network structures. ERGMs have several advantages over the utility-based logit models: (1) 

Network links are modeled to be interdependent in ERGM rather than assumed to be independent; (2) ERGMs can 

incorporate binary, categorical, and continuous node attributes to determine whether they are associated with the 

formation of network links, (3) ERGMs are capable of characterizing local and global network features; (4) ERGMs 

can be applied in flexible ways to many different types of network and relational data; (5) Data used for fitting ERGMs 

can be cross-sectional or longitudinal (change with time), and a dynamic model can be built to study the emergence 

and dynamics of a network; (6) In contrast to a machine learning model that focuses on prediction, ERGM is an 

explanatory model whose results can be used to derive behavioral theories and design implications.  

This paper employs MNA for the study of customer-product relations as a complex Multidimensional Customer-

Product Network (MCPN) in the context of engineering design. While the proposed MCPN is expected to be widely 

applicable for characterizing any type(s) of preference relations (e.g., consideration decision, purchase decision), the 

detailed development in this paper is devoted to modeling consideration decisions among product alternatives. Our 

emphasis in this paper is on demonstrating the uniqueness and potential of the MNA approach rather than testing the 

model prediction capability per se. Examining how to improve the prediction accuracy of such network models to 

improve the quality of design decisions belongs to future work. The rest of the paper is organized as follows. Sec. 2 

introduces the technical background and recent accomplishments in social network research. Sec. 3 describes the 

conceptual framework of the proposed approach and illustrate the development of MCPN progressively from a 

unidimensional structure to a multidimensional structure with multiple types of nodes and links. Sec. 4 develops two 

network implementations using the vehicle preference data in China market -- a descriptive approach for a 

unidimensional network and a statistical inferential technique for a multidimensional network. Finally, Sec. 5 presents 

the pros and cons of the MNA approach and the opportunities for future research.  

2. TECHNICAL BACKGROUND 

2.1 Network analysis in product design and market study 

Network analysis has attracted considerable interest in product design and market study. In product design, 

network analysis has been used to characterize a complex product as a network of components that share technical 

interfaces or connections. Using the network metrics such as “centrality”, Sosa et al. (Sosa et al., 2007) defined three 

measures of modularity as a way to improve the understanding of product architecture. Based on Sosa’s work, Fan et 

al. (Fan et al., 2013) developed a bottom-up strategy for modular product platform planning. A recent work by Sosa 

(Sosa et al., 2011) found that proactively managing the use of network structure (such as hubs) may help improve the 

quality of complex product designs. Network analysis has also been applied to studying designers’ network for 

understanding organizational behavior (Contractor et al., 2011) and improving multidisciplinary design efficiency 

(Cormier et al., 2012). In market study, text-mining apparatus has been integrated into a network analysis framework 

to understand customers’ top-of-mind associative network of products based on a large-scale, customer generated 

dataset on the Web (Netzer et al., 2012). However, all the aforementioned product/feature networks are 

unidimensional, without including customers and their (preferences) relations to products in the same network. In 

contrast to the existing unidimensional product network analysis approaches, our multidimensional customer-product 

network (MCPN) is built with both product and customer nodes, together with product feature associations and 
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customer social network, to understand how customer decision-making interacts with product attributes and how 

social influence affects individual decisions for new products.  

2.2. Modeling the impact of social influence 

There is growing recognition that modeling the impact of social influence is important in product design (Aral 

and Walker, 2011). A comprehensive study of how peer influence affects product attribute preference was provided 

by Narayan et al. (Narayan et al., 2011) who modeled three different mechanisms of social influence. By combining 

traditional conjoint analysis on product features with peer influence, their work showed that peer influence causes 

people to change perspective on product importance, and that some product attributes are more sensitive to change 

than others. However, the approach requires a strict format of survey data to evaluate the attitude change before and 

after exposure to peer influence. 

In modeling social influence in customer vehicle choices, a simulation-based approach has been developed in our 

earlier research to capture the dynamic influence from social networks on the adoption of hybrid electric vehicles (He 

et al., 2014). The social network impact is captured via introducing “social influence attributes” into the discrete choice 

utility function. The effects of these attributes are assessed through the social network simulation, where the network 

was constructed based on the “social distances” measured by the dissimilarities of customers’ social profiles. This 

approach was demonstrated through a vehicle case study where a customer’s decision in choosing an eco-friendly 

alternative fuel vehicle could be influenced by neighbors and friends modeled as a small world network. Similar 

treatments of using a small world network for capturing social influence have also been found in (Delre et al., 2007, 

Watts and Strogatz, 1998). In this research, a multidimensional network approach is proposed to measure 

simultaneously customer-customer social interactions together with customer-product preference relations for 

assessing social impact on preference decisions. A simulation-based social network construction approach, similar to 

(He et al., 2014), is applied to convert customer attribute vectors into relational data in constructing the social network 

as a part of the MCPN which takes into account the interdependence of attributes and the interactions between 

customers and products. 

2.3. Advances in Social Network Analysis 

In the past decade, social network scholarship has made a concerted effort to move from describing a network to 

developing techniques that explain the emergence and dynamics of networks. Development of analytical techniques 

to explain the emergence of networks is often motivated by the multitheoretical multilevel (MTML) framework (Monge 

and Contractor, 2003). Social network models are multi-theoretical because of the growing recognition among social 

networks researchers that the emergence of a network can rarely be adequately explained by a single theory. Therefore, 

social network models combine disparate theoretical generative mechanisms, such as self-interest, collective action, 

social exchange, balance, homophily, proximity, contagion, and co-evolution. Social network models have multilevel 

interpretations because the emergence of a network can be influenced, for instance, by theories of self-interest that 

refer to characteristics of actors (at the individual level), theories of social exchange that describe links between pairs 

of actors (at the dyadic level), theories of balance that explain the configuration of links among three actors (at the 

triadic level), and theories of collective action that explain configurations among larger aggregates of actors (at the 

group or network level).  
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Among the network modeling techniques, the Exponential Random Graph Model (ERGM) provides the statistical 

inference framework for multidimensional network analysis (MNA) . Technically, we can define matrix Y as a random 

graph in which rows and columns represent customers and products, respectively. Yij = 1 refers to a relation, such as 

the preference (consideration or purchase) decision between customer i and product j, and 0 otherwise. ERGMs have 

the following form: 

 
 

  
1

expP
c

   T
Y y θ z y

θ
,             (1) 

where (i) y is the observed network, a random realization of Y; (ii) z(y) is a vector of network statistics corresponding 

to network characteristics in y, and the settings of product and consumer attributes; (iii) θ is a parameter vector 

indicating the effects of the network statistics; (iv) c is the normalizing constant that ensures the equation is a proper 

probability distribution. Eqn. (1) suggests that the probability of observing any particular graph (e.g. MCPN) is 

proportional to the exponent of a weighted combination of network characteristics: one statistic z(y) is more likely to 

occur if the corresponding θ is positive. Examples of possible z(y) statistics used in MCPN is detailed in Sec. 3.3. Our 

research aims to interpret the meaning of these network effects z(y) in order to understand customer-product relations 

for product design.  

3. A MULTIDIMENSIONAL NETWORK APPRAOCH FOR PREFERENCE MODELING 

3.1. The Multidimensional Customer-Product Network (MCPN) Framework 

In this paper, we recast the problem of modeling customer preferences as network modeling of customer-product 

relations. We view engineering products as an inherent part of the expanded social network along with human actors. 

Fig. 3 describes the structure of the MCPN framework, which is characterized by two classes of nodes at two layers 

(“product” and “customer”) and multiple types of relations within and between the two layers.  

The product layer contains a collection of engineering products P (e.g., vehicles, electronics and appliances, 

software). Products are connected by various links which can be either directed or non-directed. Directed links often 

involve product hierarchy or preference, while non-directed links imply product similarity or association. Product 

attributes or features, quantitative (e.g. fuel efficiency, horsepower) or qualitative (e.g. safety, styling), can be taken 

into account as nodal attributes. Similar attributes/features between products are represented as association links in 

the product network. Alternatively, product associations can be identified by their co-consideration relations from 

customers. The customer layer describes a social network consisting of a customer population C who make decisions 

or take actions. Each customer has a unique profile (e.g., socioeconomic and anthropometric attributes, purchase 

history and usage context attributes, etc.) which potentially affects customer preference decisions. Links between two 

customers represent their social relations, such as friendship or communication. The structural tendencies of these 

social relations reflect the underlying social processes for creating and maintaining links such as homophily and 

proximity (Monge and Contractor, 2003). Much of the developed literature in social network analysis can be employed 

here to construct a customer social network. Customer-product relations are indicated by various human activities 

such as purchase and consideration decisions. The customer-product links are created between two sets of nodes from 

two adjacent layers, representing customer preferences. As shown in Figure 3, if a customer purchases a product, there 

is a solid line linking the customer and product nodes. If a customer considers a product, the link between the two 
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nodes is marked as a dashed line. As noted, a customer can consider several products at the same time while the final 

purchase is only one or none. These preference links can be flexibly constructed by various sources of data, e.g., 

survey data, transaction data, and user-generated text data. 

 

Figure 3：Multidimensional Customer-Product Network 

 

As seen, the proposed MCPN framework can capture rich information on dependency in a complex socio-

technical system so as to assist product design decision-making. A combined analysis of all relations mentioned above 

allows designers to evaluate product decisions not in isolation, but with expectation that the market system will react 

to the planned decisions, and any design change may easily affect other connected entities across the network in ways 

that were initially unintended. 

3.2. Unidimensional Network Analysis of Product Associations 

Our development of MCPN started with the unidimensional network analysis to a single layer network with only 

product nodes and associations. The unidimensional network can be viewed as a compressed but simplified version 

of the more complicated bipartite (customer-product) networks by projecting it to a single layer (Wasserman and Faust, 

1994). The unidimensional network enables designers to explore the use of descriptive metrics in identifying 

aggregated product associations that can reveal the implied product similarity and diversity, product market 

competence, product market segmentation, and other opportunities for design improvements. 

The links in a product association network can be constructed in many ways. For example, using the customer 

preference data, a customer-driven product association network can be established, where the links between products 

reflect the proximity or similarity of two products in customers’ perceptual space. Standard measures of association 

rules, such as the “lift”, can be used to quantify the strength of the connection (Tan et al., 2004) between two products 

based on how often they are in the same consideration set. Alternatively, a feature-driven product association network 

can be established with the help of product specification data, where the association between products can be 

determined by measuring the similarity of product attributes/features from designers’ point of view. Distance measures 

commonly used in content-based recommender systems, such as Jaccard index (Real and Vargas, 1996), Cosine 

Product layer
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similarity (Chowdhury, 2010), Gower similarity ((Gower, 1971)) and etc., can be applied to assess the strength of 

connections. 

Table 1: Examples of Descriptive Network Analysis for Analyzing Customer-Driven Product Associations 

 Network Analysis Solution Techniques Network Topology 

C
e

n
tr

al
it

y 

Centrality involves the identification 
of the ‘most competitive’ products in 
the network (Wasserman and Faust, 
1994). We assume that more central 
(or more connected) products have 
higher levels of survivability in 
market competitions as a result of its 
structural advantages. 

Measuring centrality can be based on 
various properties of a node, e.g.,  
number of direct connections to all 
other nodes (degree), minimum 
distance to all other nodes 
(closeness), and maximum occurrence 
on the path of two other nodes 
(betweenness) (Wasserman and 
Faust, 1994). 

 
Figure 4a. Vehicle Centrality in 

Network, Constructed Based on 
Co-consideration Data 

C
o

m
m

u
n

it
y 

Community refers to the occurrence 
of groups of nodes that are more 
densely connected internally than 
with the rest of the network 
(Newman and Girvan, 2004). If 
appropriate communities are 
detected, the network can be 
collapsed into a simpler 
representation without losing much 
useful information. 

The modularity maximization method 
(Newman and Girvan, 2004) can be 
used as the objective function to 
capture the quality of a network 
structure. The problem is solved as an 
NP-hard optimization problem.  

 
Figure 4b. Vehicle Community in 
Network, Constructed Based on 

Co-consideration Data 

H
ie

ra
rc

h
y 

Hierarchy is formally defined as a 
strict partially ordered set which can 
be represented as a directed 
network (Corominas-Murtra et al., 
2013), where each element of the 
set is a node and the partial ordering 
(P1<P2) gives an edge from P1 to P2. 
The directed link reflects customers’ 
aggregated preference across the 
population. 

To find local hierarchies of nodes, 
centrality metrics can be applied as 
well to a directed network 
configuration. To bring global order to 
the nodes, heuristic search 
algorithms, e.g. Google’s PageRank 
(Page et al., 1999), can be employed 
to find the best hierarchy in a 
polynomial time.  

 
Figure 4c. Vehicle Hierarchy in 

Network, Constructed Based on 
Co-consideration and Purchase 

Data 

 

The descriptive network analysis involves the computation of topological measures to assess the position of nodes 

and the implication of structural advantages. Examples for analyzing customer-driven product associations are 

provided in Table 1. Centrality (Freeman, 1979, Wasserman and Faust, 1994) measures a product’s competitiveness, 

indicated by its level of connectivity to other products. As an example in Fig. 4a, a vehicle network is constructed 

based on co-consideration data, indicating if two vehicles are co-considered by the majority of customers. As seen, 

Toyota Camry is more “central” to other vehicles, implying it has the potential to satisfy a broader range of customers. 

Honda Civic SDN and Lincoln MKX are the next widely-considered cars in customers’ minds. Network community 

(Clauset et al., 2004, Newman and Girvan, 2004) analysis identifies products in the same community based on the 

link strengths and connections. In Fig. 4b, two distinct communities (“compact vehicles” in green dots and “high-

performance midsize vehicles” in orange dots) are found in the vehicle co-consideration network. The emergent 
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product communities can be used to detect consumer choice set and potential product competitions (Wang and Chen, 

2015). “Crossover” vehicles that belong to multiple (overlapping) communities can also be identified through this 

analysis (Gregory, 2007, Palla et al., 2005). Network hierarchy (Corominas-Murtra et al., 2013, De Vries, 1998, Gupte 

et al., 2011) is illustrated by the directional network links in Fig. 4c which encode preference ranking based on both 

consideration and purchase data. Products with high preference ranks (e.g., Camry with many incoming edges) are 

shown in darker colors. Note that in analyzing feature-driven product association networks where products are linked 

based on shared features, centrality, community, and hierarchy have different implications. For example, community 

implies product families where common features are shared among products.   

Although the unidimensional network approach can describe interdependencies in relational data, the method 

cannot provide quantitative assessment of the impact of product attributes for a particular group of customers of 

interest. Further, the unidimensional network analysis studies customers’ averaged (aggregated) preference across the 

population. Advanced network modeling approaches that capture disaggregated preference behaviors of individual 

customers are needed as examined next. 

3.3. Analyzing Multidimensional Network Considering Product Associations 

To model heterogeneous customer preferences in products with close associations, we integrate the product 

association links with customer-product preference relations as a multidimensional network (see Fig. 5), including 

two classes of nodes (customers and products), multiple types of customer preference relations, and association 

relations among products. By introducing the information from the second mode (i.e. customers), we aim to develop 

a network model capable of capturing customer preference heterogeneity and multiple dependent decisions, while 

considering product feature associations.  

Beyond existing network approaches that are mostly descriptive in nature, we use ERGM as a unified statistical 

framework to analyze the MCPN. In ERGMs, the observed network is considered one realization of an underlying 

probabilistic distribution, without assuming the independence of nodes or links. A local topological configuration in 

the network, i.e. a set of connected nodes and links, is regarded as an exploratory variable representing the structural 

features of potential interest. Networks in the distribution are assumed to be “built up” from the localized patterns 

represented by the structural features. ERGM literature has established more than 20 different types of effects (Lusher 

et al., 2012) for describing the various forms of dependence that exist in the relational data within social networks. 

Examples of effects, their configurations, and interpretations are provided in Table 2. Our focus is to interpret the 

meaning of these effects to understand customer-product relations for product design. 

 

Nodes:

Customer
Product

Relations:

Feature association
Purchase decision
Consideration decision
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Figure 5：Multidimensional Network Considering Product Associations 

The network effects fall into three categories: pure structural effects, attribute-relation effects involving 

product/customer attributes, and cross-level effects involving both between-level and within-level relations. Pure 

structural effects are related to the well-known structural regularities in the network literature (e.g., effects [A] to [C] 

in Table 2); attribute-relation effects assume the attributes of products/customers can also influence possible tie 

formations in a given structure. At the two-node level (effects [A], [D], [E]), interpretation resembles the attribute-

effect in a logistic regression [121, 122]. The main effect (effect [D]) can be used to test how attractive a product 

attribute is. The interaction effect (effect [E]) captures whether certain features are favored by a particular group of 

customers or not. Beyond conventional logistic models, the network approach also evaluates higher-order effects such 

as at the levels of three-node (effect [F]) and four-node (effect [G]). The product association relations can be captured 

by the cross-level effects (effect [H]) that integrate customer preferences with product similarities. In this way, the 

analysis can explain whether certain types of customers tend to consider product alternatives associated with a specific 

set of attributes. 

Table 2: Examples of Network Effects in MCPN, with Graphical Configurations and Design Interpretations.  

Pure Structural Effects Configuration Interpretation 

[A] Density 
 

This effect captures the baseline propensity of forming a link. It is similar to 
the intercept in a regression model. 

[B] Alternating k-stars for 
products 

 

This effect measures the dispersion of the degree distribution. 
Alternatively, it can be thought as a test of the “rich get richer effect”. 
Example: A positive parameter indicates that the network links are 
centralized around a few high-degree nodes of products.  

[C] Alternating k-cycles for 
customers  

This effect captures the propensity of customers to engage in closed 
structures. Example: Two customers considered the same product also 
consider some other products together. 

Attribute-Relation Effects Configuration Interpretation 

[D] Main effect  

This effect captures whether the binary attribute or higher scores on a 
continuous attribute tend to express more links. Example: A significant 
negative parameter for vehicle fuel consumption means fuel efficient cars 
are more likely to be considered by customers. 

[E] Interaction effect  

This effect captures the interaction of the nodes between different types. 
Example: A significant positive coefficient for family size of customers and 
vehicle size of products suggests customers from large families tend to 
consider large size cars.  

[F] Two-paths difference 
effect  

This effect captures the differences of continuous attributes on the ends of 
a 2-path. Example: For “price”, a negative significant estimate suggests that 
two cars with little price differences tend to be considered together by the 
same customer. 

[G] Four-cycle difference 
effect  

This effect captures whether closed structure is more likely to occur 
involving two customer nodes with similar attributes. Example: For 
“income”, a negative significant coefficient means that customers with 
similar income tend to share many cars in consideration. 

Cross-level Effects Configuration Interpretation 

[H] Association based 
closure effect  

This effect captures whether a closed structure is more likely to occur 
involving two product nodes with an association link. Example: A negative 
significant coefficient means that customers do not tend to consider two 
cars with many common features at the same time. 

 Product w/ attributes       Customer w/ attributes       Product w/o attributes      Customer w/o attributes 

…

…

-

-



12 

Once the network effects of interest are identified, their significance can be determined by estimating the model 

parameters of an ERGM via likelihood maximization, given the observed network data. As the exact maximization of 

the likelihood function requires a summation over all possible configurations of the network and is computationally 

demanding, approximation techniques (e.g., maximum pseudolikelihood (Frank and Strauss, 1986), Markov Chain 

Monte Carlo maximum likelihood (Geyer and Thompson, 1992)) can be employed to determine the estimates of 

effects.  

Compared to a unidimensional network (Sec. 3.2), a multidimensional network provides a more natural way to 

model relations between two different classes of nodes (customers and products) and the non-hierarchical association 

relations between products. Moreover, its capacity to preserve two types of nodes allows designers to parse out the 

unique contribution of different types of nodes to the overall network structure. Its ability to integrate product networks 

and customer-product relations allows designers to model interdependent product relations and correlated preference 

decisions explicitly, without specifying complicated error structures as often done in DCA. 

3.4. Analyzing Multidimensional Network incorporating Social Influence 

To account for the effect of social influence on customer preference decisions, we further expand the 

multidimensional network structure to simultaneously measure within-layer social relations, within-layer product 

associations, and between-layer customer-product relations (Fig. 6).  

The proposed multidimensional network allows the evaluation of both the “peer effect” and the more general 

“crowd effect” (Urberg, 1992), depending on how product associations and social relations are defined. Relations 

between customers are used to model “peer effect” on customer attitudes and preferences. The term “peer” has a broad 

meaning which may include “friends,” “neighbors,” “experts,” “relatives” or even “online reviewers” with whom 

customers may exchange information about new products. The preference hierarchies among products, as defined in 

Sec. 3.2, can be used to capture the effect of “social crowd”. The evaluation of social influence is done by assessing 

the structural tendencies of networks informed by social influence theories (Table 3). Using ERGMs, one can quantify 

the effects of social influence by statistically estimating the extent to which structural tendencies implied by social 

theories influence the probabilities of the observed network. Similar to the network effects in Table 2, customer and 

product attributes can be incorporated into the social influence structures for investigating how social influence varies 

across customers and products. 

 

Nodes:

Customer
Product

Relations:

Feature association
Preference association
Purchase decision
Consideration decision
Social interaction
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Figure 6: Multidimensional Network Considering Social Interactions 

Due to the complexity of data collection, customer social network data is often not collected in consumer surveys. 

An alternative is to construct social relations through network simulations (He et al., 2014), based on certain 

hypotheses of network structure and “social distance” measured by the collected customer profiles. For example, based 

on the theory of homophily (McPherson et al., 2001), we can assume that two nodes with shorter social distance 

(similar customer attributes) are more likely to be connected. Unlike the prior research that incorporates social 

influence as customer attributes, this research employs the ERGM to assess the social influence effects. In theory, 

compared to the use of discrete choice analysis, one should draw more reliable conclusions based on the results from 

the network approach, because of its capability of handling correlated node attributes and interdependent link relations, 

which avoids faulty inferences on covariates (Cranmer and Desmarais, 2011).  

Table 3: Examples of Social Influence Effects in Multidimensional Network 

Social Influence Effects Config. Interpretation 

Crowd effect on 
purchase 

 

When comparing two products under 
consideration, a customer is more likely 

to purchase the one favored by the 
majority of customers. 

Peer effect on purchase 

 

Customers tend to purchase the product 
that their “peers” recommended, either 

through use or discussion. 

 Product w/o attributes       Customer w/o attributes  

 

4. CASE STUDY – VEHICLE PREFERENCE MODELING 

In this section, two implementations on modeling vehicle preferences in the growing China market are presented 

to demonstrate the proposed methodology. From simple to complex, our research first examines the use of unimodal 

networks in Sec. 4.1, studying the product associations from customer’s points of view, and identifying product co-

considerations and preference hierarchies. In Sec. 4.2, a multidimensional network is constructed where the ERGM is 

applied for analyzing customer preferences towards vehicle products, while assessing simultaneously the impact of 

customer social interactions and product associations. The examples are developed to illustrate the new insights that 

can be gained but cannot be addressed using the traditional DCA, as well as the flexibility and broad applicability of 

network analysis to modeling the individual-level preference data. 

 

4.1. Using Unidimensional Network for Modeling Vehicle Associations and Hierarchies  

In the first implementation, we demonstrate the unidimensional network analysis (Sec. 3.2) for identifying 

aggregated product associations and hierarchical preference relations. Beyond existing literature, our work utilizes 

both consideration and purchase data in market surveys to derive relationships among vehicle products for 

understanding customer preferences and product competitions. We develop two types of product association networks 

– a vehicle association network with undirected links showing the similarity of products, and a vehicle hierarchal 

network with directed links indicating preference hierarchies.  
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The two vehicle association networks are constructed using the 2013 New Car Buyers Survey (NCBS) data 

provided by an independent research institute in China. The dataset contains 49,921 new car buyers who considered 

and purchased from a pool of 389 vehicle models in 2013. Both the set of considered vehicles and the final purchase 

are recorded for each customer. Customer demographics and product information are also reported by respondents.  

The vehicle association network is created to aid the analysis of customer consideration decisions by linking any 

pair of vehicles if both vehicles are considered by most consumers in his (her) consideration set. The association link 

is viewed as a form of similarity or closeness between any two vehicles in customers’ minds. The link strength is 

quantified by lift to reflect how often the two products are compared by a population of customers. The lift between 

product i and product j is defined as the probability of co-consideration over the probability that they are being 

considered individually, see Eqn (2). The probability value is approximated by the percentage of product 

(co)occurrence recorded in the NCBS data. 

 

   

Pr co-consider  and  
( , )

Pr consider Pr consider 

i j
lift i j

i j



.      (2) 

To prune the network links, a thinning threshold at 1 is chosen for the lift value; a lift greater than 1 has a precise 

statistical meaning showing a positive association between the two products (Tan et al., 2004). For example, Honda 

Guangzhou Odyssey and Mazda FAW 8 are positively associated, as shown in Fig. 7(a). The association link implies 

that the two products have a high chance of being co-considered. From the customer’s perspective, it means that a 

customer considers Odyssey is also very likely to consider Mazda 8 at the same time.  

 

(a). Centrality and Community in Vehicle Association Network.  
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(b). In-degree Hierarchy in Hierarchical Preference Network. 

Figure 7. Unimodal Vehicle Networks Constructed from NCBS 2013. Nodes are Sized by 

Network Degrees (or In-degrees) and Colored by Network Communities. Network Layout 

is Computed by the Fruchterman–Reingold Force-Directed Algorithm based on Aesthetic 

Criteria (Fruchterman and Reingold, 1991). Link Strength is not Specified and has no 

relation to the Distance of Nodes.  

 

As a measure of network centrality, the node degree calculates the number of links attached to a node. In the 

vehicle association network, products with a higher degree centrality are those frequently co-considered with many 

other vehicles by customers. Examples of high-degree centrality vehicles include GM SGM Chevrolet Sail, Audi FAW 

Q5, and Kia Dongfeng Yueda K2. One interesting observation is that most of the high-centrality vehicles are also 

among the most popular vehicles considered by customers, though the two quantities are not equivalent in definition. 

Another observation is that the node degrees is not uniformly distributed such that some vehicles are considered more 

frequently than others.  

For the constructed vehicle network, the product community analysis is employed following Newman’s 

modularity method to determine groups of interconnected vehicles. In Fig. 7(a), the seven identified communities are 

marked in different colors. The product communities inform designer the marketing coverage of a brand family and 

marketing competence across several brands. For example, the yellow community includes most domestic entry-level 

sedans (e.g., BYD F6, Chery QQ, etc.), while the green community is featured by premium SUVs by foreign 

manufacturers (e.g., Jeep Grand Cherokee, Land Rover Discovery, etc.). It is also observed that a product line’s 

marketing success is highly influenced by its product positioning strategy. The successful product lines in the market 

generally cover more network communities. For example, as two marketing leaders in China, Volkswagen and GM 
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have covered 6 out of the 7 network communities, implying a great diversity of their vehicle products across multiple 

segments.  

As a refinement to the above undirected network, a directed network is constructed where a link direction is 

determined through both consideration and purchase data in NCBS. If for any pair of vehicles, a customer considers 

both vehicles but chooses one over the other, the link direction will point towards the purchased vehicle. The lift metric 

shown in Eqn. (3) is slightly modified to accommodate the evaluation of directed link strength.  

 
 

   

Pr co-consider & ,purchase 

Pr consider Pr consider 

i j j
lift i j

i j
       (3) 

Again, the links are trimmed to highlight positive associations, where the link direction captures the preference 

hierarchy between the two linked products. For example, a bi-directional (mutual) link between Toyota Alphard and 

Mercedes Fujian Viano can be interpreted as the intense competition between the two products (Fig. 7(b)), because 

both vehicle models attract significant percentages of customers in considerations. Nevertheless, Viano gains a slight 

upper hand in market competition, because the strength of the link in that direction is stronger.   

With a directed network, graph metrics indicating node hierarchy, such as node in-degree, can be computed to 

reflect customers’ aggregated preferences across the population. The in-degree of a node computes the number of 

incoming links pointed to that node. A node with a high in-degree value implies the corresponding vehicle is very 

likely to be considered with other vehicles and is also more preferred in customer choice (purchase) decisions. For 

example, Audi FAW Q5 and Ford Kuga are popular vehicles in choice, which are ranked high in both degree centrality 

and in-degree hierarchy. In contrast, Volvo V40 and Ford Edge have been frequently considered (high degree centrality 

in undirected network), but fall behind in customers’ final choices (low in-degree hierarchy).  

Our illustrative example shows that descriptive network analysis may serve as a useful tool for designers to 

determine product positioning and product priorities in the phase of design planning. Centrality, community, and 

hierarchy allow designers to uncover the root-causes of the differences in vehicle sales under a specific market. These 

efforts may reveal issues that a design team could work on, e.g., product recognition (low centrality rank), coverage 

and diversity of product lines (products not appearing in certain communities), product competence (several vehicles 

in the same community), and product configuration (low hierarchy rank), etc.  

While analyzing the structural information of a unidimensional network can be useful in describing product 

associations, there is a need for an approach to quantitatively evaluate customer heterogeneous preferences while 

addressing issues such as dependent alternatives, multiple decisions, social influence, and correlated observations. To 

demonstrate such capabilities of a network model, our next example employs ERGM in the MCPN framework with 

various nodes, relations and attributes included. 

4.2. Using MCPN for Modeling Luxury Vehicle Preferences in Central China 

Our second implementation demonstrates the use of inferential network technique (ERGM) for analyzing the 

vehicle MCPN framework (Secs 3.3 & 3.4). This network implementation also draws from the 2013 NCBS data to 

understand customer preference trends in China. With a focus on the luxury vehicle market, we examine respondents 

who live in the central provinces of China and consider only luxury imported vehicle models in their decision journey. 

This focused interest results in a subset data of 378 customers and 65 luxury vehicle models for modeling and 
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evaluation. As reported by McKinsey, the top reasons for Chinese customers to choose a luxury vehicle are: “reflection 

of social status”, “self-indulgence” and “business credibility”. Therefore, we expect that socially influenced decisions 

are more common in luxury vehicle buyers in China. In addition, the Chinese auto market is renowned for its 

complexity and volatility. Strong regional differences exist as a result for brand accessibility and lifestyle needs. 

Because of these hidden reasons beyond the functionality and design of a vehicle itself, quantifying the attractiveness 

of a vehicle attribute in such conditions becomes even more difficult. 

The proposed MCPN integrates a feature-driven product association network, a customer-product network, and a 

customer social network as a unified entity for analysis. The implementation of the proposed approach goes beyond 

the descriptive analysis and consists of three major steps: network construction, ERGM specification, and ERGM 

interpretation; each of these steps is explained in the remaining of this section.  

4.2.1. Data Transformation & Network Construction 

1) Product Associations. Depending on the product complexity and the purpose of analysis, product associations 

can be built using either the “complete set of features” or “subsets”. In this example, product association links in the 

product layer of the multidimensional network are constructed using the complete set of attributes considered, 

including vehicle price, engine capacity, fuel consumption, and the existence of turbo. The association link is viewed 

as a form of overall product similarity from the perspective of engineering design. By converting the similarity of 

vehicle attributes as product association links, our emphasis in ERGM analysis is on testing whether customers tend 

to consider two vehicles with many common design features at the same time. Within the association network 

construct, the Gower's coefficient (Gower, 1971) is calculated to determine the existence of a link between any product 

pair. Gower’s coefficient has the capability to appropriately handle continuous, ordinal, nominal and binary variables 

as inputs. Each continuous attribute is standardized by dividing each entry over the range of the corresponding 

attribute, after subtracting the minimum value; as a result, the Gower’s similarity score has a range of [0, 1] exactly. 

Based on the empirical results, a global thinning threshold at 0.05 is chosen, which means the connected vehicles have 

similar levels across all attributes considered. This threshold also gives a reasonably dense network that ensures the 

estimated ERGM estimates are reliable (Lusher et al., 2012).  

2) Preference Relations. We use the between-layer links connecting a product and a customer to model 

customers’ consideration decisions over vehicle models. The structure of these links is precisely defined by NCBS 

data. In the survey, respondents are asked to report a list of vehicles that they seriously considered, including the 

purchased one. The number of consideration number ranges from 1 to 3. No customer listed more than 3 vehicles, 

even though the actual number might be higher.  

3) Social Relations. Unlike the product association links which can be flexibly determined, the social links 

between customers have more specific meanings in social theories. Using the same strategy in our previous work on 

network simulation (He et al., 2014), a social space is constructed based on customer geographical locations and 

selected social attributes (age, income, education). Based on the homophily assumption that two customers with 

shorter distance in the social space are more likely to be connected, a global threshold is chosen to determine if a 

social link exists or not. To mimic the properties of real world networks, we then adjust the social links using the 

small-world model (Delre et al., 2007, Watts and Strogatz, 1998) to assure the high transitivity (“one’s friends are 
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likely to be friends”) and low average path length (“six degrees of separation” between any two individuals). The 

small world mechanism provides a viable way to represent social links through both close and distant connections, 

implying that customers are not only influenced by their nearest neighbors in their social space but also a small number 

of remote contacts outside their regular social proximity.  

Integrating the three types of network relations together, a visualization of the construction process for the MCPN 

structure is presented in Fig. 8. The complexity of network progressively increases from product association only in 

Fig. 8(a), to adding customer-product relations in Fig. 8(b), to adding the customer-customer relations in Fig. 8(c). As 

noted, we only include one type of preference link (consideration) and one type of product association link (feature-

driven) for demonstration. All links are binary-valued and undirected.  

   

(a) Product relations only (b) Preference links added (c) Social relations added 

Figure 8: Progressive Construction of MCPN using NCBS 2013 Data. Products as Blue Squares and Customers as Red 

Disks. 

 

4.2.2. Specification of ERGMs for Multidimensional Networks 

With the constructed MCPN structure, the conditional form of ERGM is employed to address the question of how 

one or more dimensions of networks would affect the structures of other networks. Specifically, our research focus is 

on demonstrating the relevance and the feasibility of the network modeling technique. As presented in Table 4, the 

examined network effects are restricted to a subset of cross-level configurations and product/customer attributes of 

different forms. The choice of which network effect to include depends on the social theory, hypothesis, and the 

specific research questions to answer. Nevertheless, the demonstrated example serves as guidance for possible effects 

to consider in vehicle preference modeling for vehicle design.  

4.2.3. Comparisons and Interpretations of ERGMs 

Estimating the model coefficients for ERGM network effects is equivalent to fitting a model that gives maximal 

support to the data. However, the maximum likelihood estimates cannot be derived analytically due to the intractable 

constant in Eqn. (1) for a reasonable number of nodes. Thus, we employ a stochastic approximation (Snijders, 2002) 

that relies on MCMC simulations of graphs.  

The result of the ERGM estimates for various specifications are presented in Table 4. The significant coefficient 

estimates are shown in bold font, meaning that the corresponding configurations are significant at the 95% confidence 

interval. We compare three model specifications based on the same dataset to highlight the benefits of the ERGM 
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approach. Model 1 formulates a bipartite ERGM analogous to a logistic model that contains only the attribute-relation 

effects composed by attributes of customers and products. This model allows the testing of influencing 

customer/product attributes in customer preference decisions, assuming that endogenous pure structural effects do not 

exist. Model 2 parameterizes a bipartite ERGM similar to Model 1 but with the addition of the pure structural effects 

and the cross-level product association effect. By comparing Model 2 and Model 1, one can test whether the addition 

of the pure structural effects and product association effect modify some of the attribute-relation effects in explaining 

customer preferences. The specification of Model 3 is the most complete model that includes all three types of ERGM 

effects. With the integration of the cross-level social influence effect, peer influences on preference decisions can be 

evaluated together with other product attributes, customer demographics, and structural patterns within the same 

model. Two penalized-likelihood criteria – AIC and BIC – are also provided in Table 4. The two measures decrease 

gradually as the addition of the considered structural effects, suggesting improved fits from Model 1 to Model 3. 

The interpretation of Model 1 is similar to that for a logistic model. The vehicle price has a negative significant 

sign, implies that lower price is preferred in consideration of luxury vehicles. The significant positive turbocharger 

and engine capacity indicate that the presence of the turbocharger and the increased size of the engine would increase 

the probability for a customer to consider a particular vehicle model. The statistically negative first-time buyer suggests 

that first-time buyers are unlikely to enter the luxury vehicle market even though three out of four new cars are 

purchased by first-time buyers in China. The fuel consumption has a significant positive coefficient, meaning that fuel 

economy is less important for customers who decide to purchase a luxury vehicle. Interestingly, the decision of how 

many luxury vehicles to consider is less relevant to the household income, as seen by the insignificant income in the 

table. As noted, most model coefficients in Model 1 agree with our prior understanding about China’s luxury market. 

This means that including attribute-related effects alone can capture an essential component of the process underlying 

the MCPN structure.  

 

Table 4: Comparison of Three Specifications of ERGMs. For Each Considered Network Effect, the Graphical 

Configuration z(y) is Presented Accompanied by the Estimated Coefficient (θ) and the Standard Error.  

  Model 1 Model 2 Model 3 

Configurations Interpreted Effects Est. Coeff (Std. Err) Est. Coeff (Std. Err) Est. Coeff (Std. Err) 

Pure Structure Effect 

 Density -7.0314 (0.398) -9.1009 (0.495) -8.9648 (0.477) 

 

Product popularity   6.4955 (0.644) 6.5123 (0.631) 

 

Consideration range    -1.4036 (0.516) -1.3199 (0.522) 

Attribute-Relation Main Effect 

 

 

Price paid to the 

dealer (in 100K 

RMB) 
-0.0346 (0.020) -0.0194 (0.019) -0.0182 (0.018) 

Turbocharger 

(dummy) 
1.2796 (0.109) 1.0617 (0.122) 0.9056 (0.118) 

…

…
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Engine capacity (in 

cc) 
0.2809 (0.134) 0.2356 (0.129) 0.1871 (0.119) 

Fuel consumption 

(in L/100km) 
0.1581 (0.039) 0.1270 (0.036) 0.1162 (0.035) 

 

First-time buyer 

(dummy) 
-0.2343 (0.096) -0.9745 (0.215) -0.9744 (0.214) 

Monthly household 

income (in 100K 

RMB) 

0.0027 (0.002) 0.0102 (0.003) 0.0125 (0.003) 

Cross - Level Effect 

 

Customer considers 

similar products 
  0.9930 (0.209) 0.9704 (0.212) 

 

Peer influence     0.4524 (0.076) 

Model Fit 

Null Deviance 34061 34061 34061 

Residual Deviance 4847 4831 4773 

AIC 5148 4851 4795 

BIC 5205 4932 4884 

Bolded coefficients are different from null at the 95% confidence interval. 

 

In Model 2, the addition of the pure structural effects and the cross-level customer considers similar products 

effect considerably changes the interpretation of the underlying preference data. The significant positive product 

popularity indicates a dispersed degree distribution of product nodes. This implies customers’ consideration decisions 

mostly concentrate on only a few vehicle models in the market. In contrast, the degree distribution is more centered 

for customer nodes, as shown by the negative consideration range coefficient, because customers only consider a 

limited number of vehicles (1-3) in NCBS data. The customer considers similar products effect is an indicator of how 

likely a customer may co-consider two vehicles that share similar design attributes. The significant positive coefficient 

means most people would judge a vehicle by its engineering attributes and consider multiple vehicles with similar 

levels of performances and prices. Concerning the attribute-relation effects, all the product effects (turbocharger, 

engine capacity, fuel consumption) generate smaller coefficients in magnitudes to their counterparts in Model 1 and 

the price is no longer significant. The change of price coefficient implies that price is actually not a decisive factor to 

consider for luxury vehicle buyers. In contrast, the customer effects of first-time buyer and income become more 

obvious. This is partly because the number of decisions (degree of customer nodes) has been controlled by the 

consideration range.  

The coefficients of Model 3 are largely consistent with those in Model 2, except that the previously insignificant 

income becomes significant, while the previously significant engine capacity becomes insignificant. The significant 

positive peer influence indicates that a customer is likely to become “irrational” in decision making and simply 

considers what his/her peer has considered. Modeling the peer influence is a unique contribution of our work as such 

effect cannot be modeled either theoretically or computationally without the MCPN framework.  

By comparing the above three models, several interesting findings can be summarized about the preference 

modeling in a multidimensional network context. First, including the attribute-relation main effects alone (Model 1) 
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can explain a large part of the formation of preference links. This observation is consistent to the foundational theory 

of many attribute-based preference modeling approach, such as DCA. Second, a model with only attribute-relation 

effects but no other relevant structural effects may ignore some of the underlying social structures represented by the 

structural patterns; therefore, such a model may produce biased results even if a researcher is only interested in a 

subset of product/customer attributes. For example, a popular product may attract a larger or smaller percentages of 

customers than we expected. This is captured by the product popularity (alternating k-stars) effect as a measure of 

node degree dispersion in a network model, but not possible in classical regression models. Finally, the peer influence 

effect (Model 3) introduces another layer of dependencies between two customers into the structure of the network. 

The significant positive estimate reflects the importance of social influence in explaining customer behavior and 

modeling product demand. Overall, the results of this example suggest that the nodal attributes (representing customer 

and product attributes) and network structures (representing product associations, social influences, and other 

underlying effects) are indispensable elements playing together in shaping the preferences of customers. 

5. DISCUSSION AND CONCLUSION 

While Discrete Choice Analysis (DCA) has been widely used to predict the influence of design decisions on 

customer preference and firm profit, in this paper, we introduce a conceptual framework of a drastically different 

approach using multidimensional network analysis (MNA) for modeling customer preferences in supporting 

engineering design decisions. We demonstrated the progression of a simple unidimensional network that contains only 

product associations, to a multidimensional network that considers product associations together with customer 

preference decisions, and finally to a more complete multidimensional structure that integrates product associations, 

customer social influence, and preference decisions as one network entity.  

The descriptive network analysis as presented in the unidimensional network example offers a convenient tool to 

summarize key facts about the customer preference data. Through descriptive network measures, nodes can be 

clustered into subsets (community) or organized in ranks (centrality, hierarchy) to reflect structural positions in a 

network. When complex product association relationships are converted into market segments and competitive 

rankings, designers can better monitor product positions within a brand or between brand competitors. Next, the 

inferential network analysis with ERGM as illustrated in the MCPN framework enables the detailed modeling of both 

the network structures and customer/product attributes in a rigorous statistical sense. Compared to traditional logit 

models, the ERGM for MNA approach can handle complex relational data whose properties cannot be reduced to only 

the attributes. This capability resolves many issues in traditional preference models, as summarized as follows: 

‒ Product associations can be modeled explicitly. In ERGM, product alternatives are no longer mutually exclusive, 

but interdependent in a network structure to influence customer’s preference decisions. 

‒ Evaluation of social influence is enabled. By constructing customer social links in the customer layer, ERGM 

allows the social network effect to be statistically assessed and compared with other factors within a single model. 

‒ Nested decisions can be analyzed through structural modeling. The model estimates can uncover not only a 

customer’s taste for a particular product, but also the relationship between several preference decisions as well as 

the number of decisions made, as represented by the correlated structural effects. 
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‒ Correlated product/customer attributes can be evaluated. Since ERGM assumes the observed network as a single 

realization from a multivariate distribution, no independence assumptions are necessary over the explanatory 

variables. Correlated product/customer attributes can be treated as structural terms and evaluated simultaneously.  

‒ Coefficient estimates are highly interpretable and the ERGM results can be easily integrated into an engineering 

design optimization problem. The model estimates in ERGM resemble closely the outputs of DCA, enabling the 

assessment of various product configurations and their impacts on customer preferences.  

The network-based preference model is superior in reducing design uncertainties, because it takes into account 

both customer and product attributes at the disaggregated level, and integrates customer decisions with product 

associations and social influences. In addition, the proposed modeling framework provides plentiful opportunities in 

engineering design research. The results of the China’s luxury vehicle study have direct impacts on understanding 

customer consideration decisions over heterogeneous products in vehicle design. It can help automakers produce more 

competitive products in shorter times to market, considering not only the engineering requirements but also the 

heterogeneous preferences as well as the underlying social impacts. Although our approach is demonstrated for vehicle 

designs, the same principles and framework can be extended to other product designs and infrastructures involving 

consideration of many alternative options and heterogeneous customer preferences, such as designing electronic 

devices, software, transportation systems, energy supplies, etc. Designers can easily assess customers’ willingness to 

choose innovative products over traditional products under social influence, and evaluating the benefits of introducing 

new designs to the market.  

Though powerful and flexible, MNA has certain characteristics that need careful attentions when implemented 

for preference modeling in the context of product design. Depending on the purpose of the analysis, the size of a 

network model can vary from a few nodes to hundreds or thousands of nodes containing a diverse set of products. 

However, the network model could be sensitive to the issue of missing data and influenced by how links are defined 

(Kossinets and Watts, 2006). In addition, for a poorly specified model, degeneracy may occur in model estimation and 

cause the Markov chain to move towards an extreme graph of all or no edges (Snijders, 2002). This issue can be solved 

by incorporating curved exponential family terms that exhibit more stable behavior in model construction (Snijders et 

al., 2006).    

As this paper is focused on developing the conceptual framework of the proposed approach, our next step is to 

enrich the case study by introducing more complex structural effects. The current MCPN application will be extended 

to incorporate other types of relations, e.g., directed association links for products and purchase decision links between 

customers and products. Examples of research questions to be answered may include how product associations and 

social relations may impact customers’ preference decisions, and how customer preference decisions will in turn affect 

market competitions implied by product associations. In addition, we will devote more efforts to the tasks of network 

model evaluation and prediction. The use of network analysis for prediction is a new topic in the network research 

community. We will extend the multidimensional network model presented in this paper to predict customers’ 

consideration sets and product choices. Changes of customer preference decisions will be forecasted under new design 

scenarios and market settings in order to translate the developed ERGM into methods suitable for design decision 

support.  
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