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Abstract The problem with the prediction of scientific collaboration success based on the

previous collaboration of scholars using machine learning techniques is addressed in this

study. As the exploitation of collaboration network is essential in collaborator discovery

systems, in this article an attempt is made to understand how to exploit the information

embedded in collaboration networks. We benefit the link structure among the scholars and

also among the scholars and the concepts to extract set of features that are correlated with

the collaboration success and increase the prediction performance. The effect of consid-

ering other aggregate methods in addition to average and maximum, for computing the

collaboration features based on the feature of the members is examined as well. A dataset

extracted from Northwestern University’s SciVal Expert is used for evaluating the pro-

posed approach. The results demonstrate the capability of the proposed collaboration

features in order to increase the prediction performance in combination with the widely-

used features like h-index and average citation counts. Consequently, the introduced fea-

tures are appropriate to incorporate in collaborator discovery systems.
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Introduction

Scientific collaboration is a social process in which people share their human capitals to

produce knowledge (Bozeman et al. 2013). A study of more than 21 million published

articles from 1945 to the present shows that teams act better in the production of high

impact, highly-cited articles (Börner et al. 2010). The complexity of scientific problems,

requirements to access to new and expensive data and research tools, technology progress

which facilitates communication and sharing are some reasons for increasing desire of

scientific collaborations (Olson et al. 2008). Therefore, collaboration among the appro-

priate individuals is becoming more important for the scientific progress (Schleyer et al.

2012).

In response to this, areas of research known as e-science, cyber-infrastructure and

science of team science have emerged (Jirotka et al. 2013) for the study of scientific

collaboration patterns and developing technologies and infrastructures to support scientific

collaborations. Also this topic attracts especial interest as a domain of CSCW1 studies in

the last few years (Schmidt and Bannon 2013).

One of the challenges in these studies is exploring how to build optimal (regardless of

one how defines the term) teams (Börner et al. 2010). The prerequisite for this is to extract

successful research collaboration patterns or answer this question that what makes a col-

laboration successful. Recently some efforts are devoted for developing CSCW systems

which support individual researchers’ effort to form optimal collaborative relationships

(Schleyer et al. 2012). Integration of collaboration networks is essential in these systems

(Schleyer et al. 2012) for below reasons:

1. Studies have shown that individual characteristics are not the only factors in individual

or collaboration success and social capital which is determined based on the social

network structure of individuals is another important factor (Abbasi et al. 2014).

2. The link structure among experts and skills is a valuable piece of information for the

estimation of skill level of experts. In this manner, the skills that are directly related to

the experts are not a sole concern.

3. Previous works point out that trust is an important factor in the collaboration success

(Stokols et al. 2008; Bennett and Gadlin 2012). Closeness of the experts in the

collaboration network can be used as an estimation of the trust level.

Although some team formation algorithms have been proposed which exploit the col-

laboration network of experts (e.g. Lappas et al. 2009; Wi et al. 2009; Gajewar and Sarma

2012; Li et al. 2015) and can be used in the collaboration discovery systems but these

algorithms have some limitations:

1. These algorithms use the weighted linear combination of two or a limited number of

team characteristics (e.g. expertise level and closeness of the members) to evaluate the

fitness of the teams (Dorn and Dustdar 2010), while these weights should be

determined manually by the users. This approach can be appropriate as they give the

flexibility to users to form teams based on the measures that are more important for

them, but it has some disadvantages. As long as the number of considered factors

(team characteristics) for team formation is limited, this approach can help, but the

team success is affected by many factors and determining the weight of each manually

is difficult. Even in cases that the weights are determined appropriately, the

1 Computer supported cooperative work.
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assumption that the team success is a linear function of these factors might not be a

correct assumption.

2. Most algorithms just exploit the collaboration network to compute the closeness of the

experts and minimize the communication cost among team members.

In this article, our goal is to motivate the CSCW and related communities to consider

more beneficial features in tools for forming successful research collaborations. Therefore

we consider the problem with the prediction of scientific collaboration success to deter-

mine these features. The term success means that the collaboration manages to achieve its

mission (Bennett and Gadlin 2012). So depending on the missions, the success for a

research team in the field of medicine can be the successful development of a vaccine or

for another team with the goal of writing a research proposal, obtaining a grant is the

success. Generally, in academic environment, success of a research team is measured based

on its effect on the scientific community (the number and citation counts of the published

articles), while in industry, the success of a research team is usually measured based on the

financial gain.

Following most previous works in this area (Bozeman et al. 2013), the scientific col-

laboration is equated with the co-authorship and the citation number within a time frame of

five years is considered as the success factor. The objective here is to extract more dis-

criminating features which if combined with the common features such as h-index or

average citation counts (widely-used in the previous works), it would improve the pre-

dictive model. Improvement means that the differences between the real success of col-

laborations and the estimated success values by the model are decreased. Since a predictive

model estimates the success based on the characteristics (features) extracted from the

collaborations, appropriate selection of features is highly important for improvement of the

model.

For this purpose, the link structures among the scholars (experts) and concepts (the

subject categories of the articles which are considered as the skills of the scholars) are of

concern in order to:

1. Estimate the expertise level of scholars applying a score propagation process that

spreads the scores (which are considered as the expertise level) through the relations

among the scholars, relations between the scholars and concepts and relations among

the concepts. So, having collaborations on a concept is not the only determining factor.

The expertise level of the scholars who are in the neighborhood and the scholar’s

collaborations on the related concepts are other factors that affect on the expertise

level of the scholar for a concept.
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Fig. 1 An example of a hypergraph for modeling three scientific collaborations
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2. Rank the scholars based on their relations with the other scholars.

For computing the two above-mentioned features, hypergraph is used for representing

the collaboration relations. A hypergraph is a generalization of the ordinary graph which

can be used to model high-order relations (Tan et al. 2011). By using this modeling

approach, we can accurately capture the high-order relations among the scholars and

concepts in each collaboration without any information loss. Also, recent studies have

shown the usefulness of this approach for modeling the collaboration relations (Sharma

et al. 2014). An example of a hypergraph for modeling three scientific collaborations is

illustrated in Fig. 1 which includes two types of vertices: scholar and concept and captures

three types of relations: collaboration relation among the scholars, relations among the

concepts and relations between the scholars and concepts. Integration of all these three

types of relations is important in capturing the competence of the scholars for participating

in a collaboration. The relations of a scholar with other scholars show with whom the

scholar can collaborate more successfully, also in the light of the count and competence of

the neighboring scholars, the competence of a scholar can be estimated better. The rela-

tions between the concepts provide semantically rich information about the related con-

cepts and improve estimation of the expertise level of a scholar for a concept. So, a scholar

who hasn’t participated in any collaboration on a particular concept but has some col-

laborations on related concepts, will receive some skill level for that concept. Finally the

direct relations between scholars and concepts show the collaboration experience of the

scholars on concepts. To the best of our knowledge no previous works exploit these

relations altogether for analyzing the success of the scientific collaborations.

Also, to preserve more information about the collaborations, in addition to aggregate

functions such as the maximum and average, the scholars are clustered based on their

values for the selected feature and then the frequency of each cluster in the collaborations

is computed. Applying Northwestern University’s SciVal Expert as the data infrastructure,

our experimental results show that the proposed features significantly improve the pre-

diction performance. So these features are valuable for incorporating in collaborator dis-

covery systems. In addition, we show that the proposed modeling approach which

integrates different kind of relations is a better choice compared to a model which just

considers the relations among the scholars or the relations between scholars and concepts.

The rest of this article is organized as follows: the previous works are reviewed in ‘‘Lit-

erature review’’ section; some preliminary knowledge is described in ‘‘Background’’

section; the proposed approach is explained in ‘‘Collaboration success prediction’’ section;

experiments are made to validate the approach in ‘‘Experiments’’ section; the article is

concluded in ‘‘Discussion’’ section and finally suggestions for further research are dis-

cussed in ‘‘Future work’’ section.

Literature review

Scientific collaboration as a research field is discussed in different disciplines including

information science, psychology, management science, computer science, sociology,

research policy, social studies of science and philosophy (Sonnenwald 2007). Each dis-

cipline focuses on a specific aspect of collaboration. In this section, research collaboration

literature that examines what constitutes the factors of a successful collaboration is

reviewed. Moreover, due to the consideration of citation count as the success measure of

the collaborations in this paper, previous works about the citation count prediction are
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considered as well. Also, team formation algorithms are examined in this section as they

optimize utility functions that measure the success of the collaborations.

Factors of a successful collaboration

Research collaboration literature which is mostly in the area of social science can be divided

into two categories: the works that examine how scholars are motivated to form collabora-

tions and the ones that study how scholars should form collaborations to be successful or what

constitute the factors of a successful collaboration. Some of these factors are related to

collaborators, some are related to the collaboration process and others are related to the

environment in that collaboration occurs (Bozeman et al. 2013). Stokols et al. (2008) point to

the regular and effective communication, mutual respect, trust and familiarity among team

members as the factors of the collaboration success. They also discuss the importance of

personal characteristics for the collaborative work. Bennett and Gadlin (2012) conclude those

teams that their members understand the overall goals of the project are more effective.

Moreover, they point to the regular communication, and the way that members resolve their

conflicts as success factors. Also, they consider trust as a foundation for the team’s success.

Eslami et al. (2013) assess the effect of social structure of collaborations on the performance

of research collaboration (i.e. number of published articles). They conclude that there is a

significant association between the number of publications and the manner through which

scholars are interconnected to one another. Skilton (2008) analyzes a sample of articles

published in high-ranking journals and finds that the articles introduced by teams including

frequently cited scholars and teams the members of which have diverse disciplinary back-

grounds receive more citation counts. Whitfield (2008) reports that the previous collaboration

experience of the members have a positive effect on the collaboration success. Cummings and

Kiesler (2008) discuss that prior experience with a collaborator reduces the negative impact

of distance and disciplinary difference in collaborations.

Although research collaboration is well-studied in social sciences and there are some

guidelines to help scholars form successful collaboration (e.g. Bennett and Gadlin 2012),

there is still a need for algorithms to form successful collaborations automatically

regarding the factors of successful collaborations (Börner et al. 2010). Also a lot of

unanswered questions remain about how to best use information technology for developing

these algorithms (Schleyer et al. 2012).

Citation count prediction

When each article is considered as a scientific collaboration and its citation counts as its

success, there would be a close similarity between this and citation count prediction

problem, of course with some differences. Although the problem of citation count pre-

diction of articles is difficult and the performance of the proposed algorithms are not still

satisfactory (Fu and Aliferis 2010), in collaboration success prediction problem, it is not

necessary to predict the exact citation count. It would suffice to predict which collaboration

will be more successful in relation to other possible collaborations and it makes this

problem easier. But in predicting the research collaboration success, no information like

venue, order of authors and reference list of the article is available. What is known are the

scholars and concepts that they will collaborate on.

Callaham et al. (2002) use decision trees and 204 publications and could explain 0.14 in

the variation of citation counts 3.5 years after the publication. They conclude that the

journal impact factor is the most predictive feature. Castillo et al. (2007) use linear
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regression and decision trees to predict the citation counts 4.5 years ahead. They find that

the citation counts accumulated within the first year after the publication are highly cor-

related with the citation counts. Fu and Aliferis (2010) predict the citation count with

machine learning methods and a combination of content-based and bibliometric features.

Wang et al. (2012) examine the factors influencing the citation counts and conclude that

the paper quality and the reputation of the first author contribute to the creation of future

citation impact. Didegah and Thelwall (2013) study different features and find venue

prestige and the number of citations attracted by the references of a paper to be the

strongest features. Yan et al. (2012) consider features including venue prestige, content

novelty, diversity and authors’ influence. Yu et al. (2014) propose a model which predicts

the citation counts of articles with a mixture of features including the number of references,

the number of authors, the h-index of the first author, the number of papers published by

the first author, maximum h-index of the authors, maximum average citation to the papers

published by the authors and the impact factor of the journal.

To sum up, citation count of an article may be influenced by four factors: author

characteristics, venue characteristics, field characteristics and article characteristics (Yu

et al. 2014). Algorithms that have been proposed for citation count prediction of the

articles mostly focus on the characteristics of the articles and venues and less effort has

been made to extract more informative features based on the previous collaborations of

scholars with one another. Moreover, few previous works benefit from the link structure

among the scholars and concepts in collaboration networks that can contribute to extract

more informative features. Another point to mention is that features based on article and

venue characteristics could not be used for the collaboration success prediction as we just

know the authors and concepts that they will collaborate on.

Team formation algorithms

The team formation problem is mainly studied in the field of operations research. However,

the underlying network structure that reflects the relationships among the scholars has been

ignored in these traditional algorithms (Li et al. 2015). Lappas et al. (2009) are the first to

solve the team formation in the presence of the scholars’ collaboration networks. They

prove that this problem is NP-hard and propose two approximate algorithms: RarestFirst

and Enhanced-Steiner. Both algorithms form teams that their members cover the required

skills while the communication cost among them is minimized. The communication cost is

measured in terms of the diameter and the minimum spanning tree cost. Dorn and Dustdar

(2010) measure the effectiveness of a team in terms of the weighted linear combination of

skill fulfillment and team connectivity based on the distance measures. They use Genetic

Algorithm and Simulated Annealing to solve the problem. Gajewar and Sarma (2012)

consider the communication cost in terms of density-based measures. Awal and Bharadwaj

(2014) use the genetic algorithm to form teams with optimized Collective Intelligence

Index (CII). CII is defined as the linear combination of knowledge competence and col-

laboration competence of a team. Knowledge competence computes the expertise score of

the participating scholars and collaboration competence captures trust among the scholars.

Previous studies show that collaboration success is affected by many factors but almost all

algorithms proposed for collaboration (team) formation try to optimize the linear combination

of skill coverage and communication cost which is a nave function for evaluating the success of

collaborations. In this paper our goal is to exploit the collaboration network to extract more

characteristics of collaborations which help to increase the prediction performance of the

Scientometrics

123



collaboration success. So these characteristics are good candidates for considering in scientific

collaboration formation algorithms.

Background

The link structure among the scholars and the concepts is a valuable piece of information

for the estimation of the scholars’ expertise level. In this manner, the concepts that are

directly related to the scholars are not a sole concern. Moreover, some studies have shown

that individual characteristics are not the only factors in individual or collaboration success

and social capital which is determined based on the social network structure of individuals

is another important factor (Abbasi et al. 2014). To include all the relations explained in

‘‘Introduction’’, we model the previous collaborations of the scholars on different concepts

with a hypergraph and a ranking algorithm is used to compute the similarity of the scholars

to concepts and rank the scholars based on their positions in the collaboration network. The

resulted ranking scores are used as a measure of the scholars’ social capital. In this section,

modeling with hypergraph and the algorithm for ranking on hypergraph are discussed.

Hypergraph

Let G(V, E, W) denote a weighted hypergraph where V is the set of vertices, E is the set of

hyperedges andW is the weight of hyperedges. Each hyperedge e 2 E is a subset ofVwhich is

used to model the high-order relations. Notations used for representing a hypergraph are listed

in Table 1 (Tan et al. 2011). As observed, each hypergraph is formally described by four

matrices including H, W, Dv and De. The matrix H is an incidence matrix for capturing the

membership of vertices in hyperedges.W includes hyperedge weights.Dv andDe are diagonal

matrices containing the vertex and hyperedge degrees respectively. The problem of ranking

vertices is addressed as assigning a score to each vertex according to its relevance to a query

vector through the minimization of the following function (Tan et al. 2011):

Qðf Þ ¼ 1

2

XjVj

i;j¼1

X

e2Eh

wðeÞhðvi; eÞhðvj; eÞ
dðeÞ

����

����
fiffiffiffiffiffiffiffiffiffiffi
dðviÞ

p � fjffiffiffiffiffiffiffiffiffiffi
dðvjÞ

p
����

����
2

þ l
XjVj

i¼1

jjfi � yijj2 ð1Þ

where y ¼ ½y1; y2; :::; yjVj�T is the initial score of the vertices, f ¼ ½f1; f2; :::; fjVj�T is the score

vector that the algorithm assigns to the vertices and l[ 0 is the regularization parameter

Table 1 Notations used for formal representation of a hypergraph

Incidence matrix
Hðv; eÞ ¼ 1; v 2 e

0; otherwise

�
Matrix that shows the memberships of vertices in the

hyperedges

Hyperedge
weight matrix

W Diagonal matrix that elements on the diagonal are the
weight of hyperedges

Vertex degree dðvÞ ¼
P

e2E hðv; eÞWðeÞ The sum of the weight of hyperedges that v is a
member of them

Hyperedge
degree

dðeÞ ¼
P

v2V hðv; eÞ The number of vertices in e

Vertex degree
matrix

Dv Diagonal matrix that elements on the main diagonal are
the degree of vertices

Hyperedge
degree matrix

De Diagonal matrix that elements on the diagonal are the
degree of hyperedges
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which controls the relative importance of these two terms. The optimal score vector ðf �Þ is

obtained when Q(f) is minimized (Eq. 2). This minimization causes the spread of the

scores among the vertices regarding their membership in the hyperedges.

f � ¼ argminfQðf Þ ð2Þ

The minimization of Q(f) can be obtained through an iterative approach similar to Random

Walk (please refer to Tan et al. 2011 for further details):

f ðkþ1Þ ¼ aAf ðkÞ þ ð1 � aÞy ð3Þ

where a is 1
1þl and A is a transition matrix:

A ¼ D
�1
2
v HWD�1

e HTD
�1
2
v ð4Þ

In this article, this algorithm is applied for ranking vertices based on their link structure

and also, computing the similarity of the vertices to a target vertex. In the first case of

ranking, the same initial score values are assigned to all the vertices, and in the second

case, the query vector is formed by assigning 1 to the target vertex and 0 to others.

Scientific collaborations as a hypergraph

Let GT1;T2
denotes the hypergraph which includes all the collaborations from the year T1 to

T2. ns and nc denote the number of scholars and concepts in the hypergraph respectively. A

unique number (index) is assigned to each scholar and concept. This index shows the

position of the scholar or concept in the query or score vector. For scholars, this index

starts from 1 to ns and for concepts is ns þ 1 to ns þ nc. Each collaboration in the year T is

denoted by eT which is composed of a set of scholars Va and a set of concepts Vc. For each

collaboration, the ranking algorithm is run on GT�d;T�1 to measure the similarity of the

Team Assembly

Social Network

Data Mining

S3

Speech Processing

S4

Image Processing

S5

Evolutionary ALgorithm

S6

S7

Neural Network

Team Assembly

Social Network

S1

S2

W=20

W=20

W=30

W=10

W=10

Fig. 2 Example of a small hypergrpah used for showing the result of the ranking algorithm (Fig. 3). Each
oval (hyperedge) represents a collaboration among a set of scholars on a set of concepts and the weight
(w) of each hyperedge shows the citation counts of the collaboration output
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scholar members to concepts as an estimation of their skill level based on their past

collaborations. Where d is the time interval considered for constructing the hypergraph.

Each time a query vector is formed for one of the concepts of Vc by assigning 1 to the

selected concept and 0 to the others in the query vector (Eq. 5). Next, the ranking algo-

rithm is run to rank the scholars for each query vector.

ysci ¼
1; i ¼ indexðscÞ
0; otherwise

�
; 1� i�ðns þ ncÞ ð5Þ

where sc is the desired concept.

For more clarification, an example of using this algorithm for ranking scholars and

computing their similarity to a concept is presented in Fig. 2, where each one of the

hyperedges is composed of two types of vertices (scholar and concept) and represents

the collaboration among the scholars on some concepts. The final scores of the scholars

for different initial scores are shown in Fig. 3. In each case the name of a scholar is

depicted based on his/her score. Those scholars that earn higher scores appear larger

with darker color. The result of ranking when the same initial values are assigned to all

the vertices (scholars and concepts) are shown in Fig. 3a. As expected, S1, S2 and S3

received the best ranking as they had collaboration with the weight of 30, followed by

S6 and S7 who had collaboration with weight equals to 20 and also are neighbor with

S2 who had a good ranking score. S4 and S5 received the lowest ranks because the

weights of their collaborations are less than the others. But since S5 is neighbor with S6

and also participated in two collaborations, its score is higher than S4’s score.

For computing the similarity of the scholars to the concept of Image Processing, first

the query vector illustrated in Fig. 4 is formed. Next, the ranking algorithm is applied to

rank the vertices. The names of the scholars with similarity to the concept of Image

Processing are presented in Fig. 3b. As expected S5 who had two collaborations for

Image Processing, received the highest similarity score, followed by S6 and S4 who had

one collaboration on Image Processing. As observed although S1, S2, S3 and S7 did not

have any collaboration on this concept, due to their relations with the scholars or

concepts who are in direct relations with Image Processing, received some non-zero

similarity.

Fig. 3 a The result of ranking scholars, b Similarity of the scholars to Image Processing

S1 S2 S3 S4 S5 S6 S7
Speech

Processing
Data

Mining
Evolutionary
Algorithm

Image
Processing

Social
Networks

Team
Assembly

Neural
Networks

0 0 0 0 0 0 0 0 0 0 1 0 0 0

Fig. 4 The query vector for ranking vertices based on their similarity to the concept of Image Processing
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Collaboration success prediction

In this section, we introduce our approach for prediction of the collaboration success.

Data gathering

Although in recent years, social networking sites such as LinkedIn2 have been developed

for scholars to facilitate communication among the researchers and also to determine their

expertise; recognition of the scholars’ expertise just based on the information they enter,

has faced many challenges. Individuals often lack motivation to update their profiles. Self-

declaration of information usually does not have enough accuracy and correctness. For

example, people may exaggerate in expressing their information or maybe they do not

enter their information completely in order not to have more responsibilities. Therefore,

determining the researcher’s expertise based on the manually entered information is not

effective and has many problems (Fazel-Zarandi and Fox 2013). Automatic extraction of

the information on the research activity of the scholars is on an increase. The term research

networking systems has been used to refer to the systems which automatically gather

information about the scholars. In these systems, authorized databases and sources are used

for the extraction of the scholars’ profiles and their collaboration network. Scival Expert is

a research networking system which has been developed by Elsevier. Northwestern

University applies the Scival Expert to represent the information about its scholars. This

information is expressed using VIVO3 ontology and is accessible from a SparQL

Endpoint.4

The extracted information such as the first and last names of the scholars, title and

citation counts of their articles are saved in a database. Since it is not possible to access the

related concepts of articles using SparQL Endpoint, this database is restricted to articles in

the field of Medicine. Then, the rPubmed library in R is used for retrieving MeSH5. terms

of the articles from PubMed Database through PMID of the articles. The MeSH is a

standard terminology that PubMed uses for expressing the subject categories or related

concepts of articles. PubMed employed skilled subject analysts to examine journal articles

and assign the most specific MeSH terms to each article (Pubmed 2005). For instance, the

MeSH terms of the article ‘‘Diagnosis and management of heart failure with preserved

ejection fraction: 10 key lessons’’ are ‘‘Animals’’, ‘‘Echocardiography’’, ‘‘Heart Fail-

ure/diagnosis’’, ‘‘Heart Failure/physiopathology’’, ‘‘Heart Failure/therapy’’, ‘‘Heart Rate’’,

‘‘Hemodynamics’’, ‘‘Humans’’, ‘‘Natriuretic Peptide’’, ‘‘Brain/blood’’.

As for training the model, the citation counts broken by year are necessary; Scopus API6

is used to add them. The number of collaborations, scholars, MeSH terms and average

collaboration size (average number of the scholars in each collaboration) for each year

from 1990 to 2006 are shown in Table 2. The tendency for more collaborative research can

be observed in this dataset as well, since the average of collaboration size is on an increase.

2 www.linkedin.com.
3 www.vivo.com.
4 http://vivo.scholars.northwestern.edu/.
5 Medical Subject Heading.
6 http://dev.elsevier.com/.
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Success prediction using machine learning techniques

Our approach for predicting the collaboration success consists of two phases: training and

evaluation. Collaborations from the year 2000 to 2005 (4238 instances) are used for

training and the year 2006 (744 instances) for evaluation of the model. The reason that

2000 is the first year used for constructing the train dataset is that a time window of 10

years length is used to extract the features of collaborations of one year. Also for the

construction of the training and evaluation sets, those collaborations of any year whose

members do not exist in the previous 10-year collaboration network, are removed. For

example, if there is a collaboration in the year 2000 that at least one of its members does

not exist in the collaboration network of years 1990 to 1999, that collaboration is removed

since its features cannot be extracted.

We construct and save a hypergraph for each time interval listed in Table 3 and use it to

extract the features of the collaborations in the target year. Each hypergraph is saved as a

set of matrices including Dv;De;W;H and A. Also, for each hypergraph, two hash func-

tions are also saved which map the concept name and uid7 of the scholars to an integer

number. This integer is used as an index for determining the corresponding row or column

of a scholar or concept in Dv, H and A. Also these indices determine the position of the

scholars or concepts in the query and score vectors. As explained before, for scholars, these

indices start from 1 to ns and for concepts start from ns þ 1 to ns þ nc. For more clarifi-

cation, the matrix of H of the hypergraph depicted in Fig. 2, is illustrated in Fig. 5.

7 Scival Expert assigns a unique identifier (uid) to each scholar.

Table 2 The characteristics of the extracted dataset from Northwestern University’s Scival Expert

Year Number of
collaborations

Number of MeSH
terms

Number of
scholars

Average
collaboration size

1990 1102 7488 3502 4.47

1991 1229 7851 4138 4.61

1992 1290 8344 4369 4.76

1993 1349 8649 4606 4.83

1994 1458 9600 5087 4.96

1995 1517 9971 5603 5.1

1996 1629 10,536 6161 5.49

1997 1731 10,742 6649 5.55

1998 1676 10,765 6829 5.68

1999 1911 11,545 8088 6

2000 1926 11,961 7842 5.75

2001 2023 12,230 9380 6.29

2002 2291 12,802 9103 5.92

2003 2429 13,035 9792 6.07

2004 2627 13,588 10,960 6.11

2005 2720 13,952 11,406 6.24

2006 2805 13,923 12,479 6.63

Scientometrics

123



For computing the features of the collaborations of each target year (e.g. 2000), first the

scholars and concept members of each collaboration are mapped to their indices using the

hash functions, next, the desired features are extracted using the hypergraph of the related

interval (e.g. 1990–1999). Feature extraction for constructing the train dataset is shown in

Fig. 6. Beginning from 2000, collaborations during 1990–1999 are used to extract the

features of collaborations of the year 2000. Then the time window is moved forward to

1991 and from 1991 to 2000, the features of the collaborations of the year 2001 are

extracted and in this way the features of all collaborations during 2000 to 2005 are

extracted. The same approach is used to extract the features from the evaluation dataset.

Collaboration relations modeling

For modeling the collaborations, a hypergraph with two types of vertices (scholars and

concepts) are used. The weight of the hyperedges is considered as the citation number of

Table 3 List of the time intervals used for constructing the hypergraphs

Time interval Target year

1990–1999 2000

1991–2000 2001

1992–2001 2002

1993–2002 2003

1994–2003 2004

1995–2004 2005

1996–2005 2006

These hypergraphs are used for the extraction of the features of the collaborations in the target years

S1

S2

S3

S4

S5

S6

S7

Speech Processing

Data Mining

Image Processing

Evolutionary Algorithms

Team Assembly

Neural Network

C1 C2 C3 C4 C5

1 1 0 0 0

1 1 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 1 1 0

0 0 0 1 1

0 0 0 0 1

0 1 1 0 0

0 1 0 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 0 0 0 0

Social Networks

1 0 0 0 0

Fig. 5 The matrix of H of the hypergraph illustrated in Fig. 2
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the collaboration output. To eliminate the bias, the weights of each year are normalized

through:

w0ðeiÞ ¼
wðeiÞ

maxðwTÞ
ð6Þ

where maxðwtÞ is the maximum weight of all hyperedges in the given year and wðeiÞ is the

weight of the hyperedge.

In the case of scientific collaboration, recent collaborations in the time window are more

important as they can better show the current scientific situation of the scholars. Temporal

dynamics are accounted by adjusting the weights of the hyperedges. An exponential kernel

is used for this adjustment as below:

w0
ti
¼ ð1 � hÞT�tihWti ð7Þ

where wti is the weight of the hyperedge, ti is its time label and T is the target year. The

parameter 0� h� 1 determines the rate of increase which is set to 0.6. This value is chosen

in a way that the extracted features have the maximum correlation with the collaboration

success.

For computing the transition matrix in hypergraph, Eq. 4 is applied where the degree of

each vertex is considered as the number of hyperedges that it is a member of. Because our

experiment shows that for this application, it works better than the sum of the weight of the

hyperedges.

Another point about modeling the collaboration relations with the proposed modeling

approach is the difference between the degree (d(v)) distribution of scholar and concept

vertices. Generally concept vertices have higher degree than scholars. For instance the

average degree of concepts and scholars of the collaborations from the year 1990 to 2006

are 25.18 and 2.14 respectively. Also, MeSH which is used for specifying the concepts of

articles has a hierarchical structure (from general to more specific terms). So the degree of

a general term like ‘‘Animal’’ or ‘‘Human’’ is very high and the degree of a term like

‘‘Hemodynamics’’ that is more specific is low. Since the transition matrix is normalized by

the degree of the vertices, these differences cause that the score of the scholars be more

affected by the scores of the scholars and the specific terms in the neighborhood which is

desirable.

Feature extraction

For training a predictive model, feature extraction is the most crucial part. As the only

available information is the previous collaborations of the members and their position in

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Train DataPredictive Model

Fig. 6 The train phase of the predictive model
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the collaboration network, the set of features should be extracted in a way that would

contribute to distinguish the successful collaborations from unsuccessful ones. These

features can be extracted based on the expertise level, familiarity of the members with one

another or their structural centrality. For each collaboration eT , the following features are

extracted for each scholar member (va 2 Va):

1. Features that represent the expertise level of the scholars

(a) The h index is a scientometric indicator for measuring the productivity of the

scholars based on their citation pattern. It is defined as ‘‘the highest number of

papers that received h or more citations’’ (Egghe 2006). First articles are sorted

in decreasing order based on their citation counts, next the h index of the

scholar va is computed as below:

h indexðvaÞ ¼ argmaxhðck � hj1� k� hÞ ð8Þ

where ck is the citation count of the kth article of the scholar.

(b) The g index is a modification of the h index which is sensitive to the level of

the highly cited papers. It is defined as ‘‘the highest number of g of papers that

together received g2 or more citations’’ (Egghe 2006). First articles are sorted in

decreasing order based on their citation counts, next the g index of scholar va is

computed as below:

g indexðvaÞ ¼ argmaxg
�
g2 �

X

k� g

ck
�

ð9Þ

where ck is the citation count of the kth article of the scholar.

(c) The average of citation counts This feature is computed for the scholar va using

below equation.

citation avgðvaÞ ¼
Pna

k¼1 citationðpkÞ
na

ð10Þ

where na is the number of the articles and pk is the kth article of the scholar.

citationðpkÞ is the citation count of the article pk.

(d) The similarity to concepts The similarity of the scholar va to the concept vc is

measured using Eq. 11.

ðSimcÞkþ1 ¼ aAT�10;T�1Sim
k
c þ ð1 � aÞyc ð11Þ

where Simkþ1
c is the ranking score vector or similarity of all the vertices of

GT�10;T�1 to the concept vc 2 Vc after k þ 1 iterations, T is the year of the

collaboration eT , AT�10;T�1 is the transition matrix of the hypergraph GT�10;T�1

and yc is the query vector for the concept vc. This query vector is constructed

using Eq. 5. Equation 11 is stopped after convergence and the resulted score

vector ðSim�
cÞ is used as the similarity or skill level of the scholars to the concept

vc. So the similarity of the scholar va to the concept vc is:

SimcðvaÞ ¼ Sim�
cðindexðvaÞÞ ð12Þ

where indexðvaÞ is the index of the scholar va.

(e) Fuzzy success and unsuccess First the citation count of all the articles of each

year is normalized. Next, all the articles of the scholar va are mapped into

successful and unsuccessful space based on their normalized citation counts
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using the fuzzy membership functions shown in Fig. 7. Finally the scholar is

mapped into these two spaces using the average of success and uncusess of his/

her articles. These features are formulated in the below equations.

Fuz successðvaÞ ¼
Pna

k¼1 successðpkÞ
na

ð13Þ

Fuz unsuccessðvaÞ ¼
Pna

k¼1 unsuccessðpkÞ
na

ð14Þ

where na is the number of the articles and pk is the kth article of the scholar va.

2. Familiarity of the scholars:

(a) The average of Jaccard similarity This similarity measure is applied to compute

the familiarity level of the scholars with one another. This measure is based on

the number of common neighbors of the two vertices. The average of the

Jaccard similarity of the scholar va to other member scholars in the

collaboration is considered as another feature of the scholar va and is computed

as below.

Jaccard simðvaÞ ¼
PjVaj

k¼1;vak 6¼va
Jaccard simðva; vak Þ

jVaj
ð15Þ

where Jaccard simðva; vakÞ is the Jaccard similarity of the scholar va to the

scholar vak and is computed as below (Liben-Nowell and Kleinberg 2007).

Jaccard simðva; vbÞ ¼
CðvaÞ \ CðvbÞ
CðvaÞ [ CðvbÞ

ð16Þ

where CðvaÞ and CðvbÞ are the set of the scholars who are the neighbor (the

collaborator) of va and vb respectively.

3. Structural centrality of the members

(a) Degree centrality is a simple centrality measure that computes the number of

direct neighbors of the individuals in a network (Freeman 1978) regardless of

who the neighbors are. The degree centrality of the scholar va is computed as

below.
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Fig. 7 Fuzzy membership functions for mapping the articles to successful and unsuccessful space based on
their normalized citation counts
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DegreeðvaÞ ¼ jCðvaÞj ð17Þ

where CðvaÞ is the set of the scholars who are the neighbor (the collaborator) of

the scholar va.

(b) Scholar’s rank the rank of the scholar va (rankðvaÞ) in the hypergraph is

computed while a query vector with equal initial values is formed for all the

scholars and concepts of the hypergraph GT�10;T�1 (applying the ranking

algorithm explained in ‘‘Background’’ section). In this feature not only the

number of neighbors of a scholar but also who these neighbors are affect the

final scores of the scholars.

After computation of the above features for the members, aggregate functions including

average and maximum are applied to compute the feature value of the collaborations based

on the feature values of their members. These features are listed in Table 4.

As explained before, the most common approach for computing the features of the

collaborations is to apply the aggregate functions like average and maximum, but when

Table 4 Collaboration features used in the predictive model

avg hindexðeT Þ ¼
P

va2Va
h indexðvaÞ
jVa j

(18)

max hindexðeT Þ ¼ maxðh indexðva1
Þ; :::; h indexðvajVa j ÞÞ; vai 2 Va (19)

avg gindexðeT Þ ¼
P

va2Va
g indexðvaÞ
jVa j

(20)

max gindexðeT Þ ¼ maxðg indexðva1
Þ; :::; g indexðvajVa j ÞÞ; vai 2 Va (21)

avg citationAvgðeT Þ ¼
P

va2Va
citation avgðvaÞ
jVa j

(22)

max citationAvgðeT Þ ¼ maxðcitation avgðva1
Þ; :::; citation avgðvajVa j Þ; vai 2 Va (23)

avg simðeT Þ ¼
P

vc2Vc
maxðSimvc ðva1

Þ;Simvc ðva2
Þ;:::;Simvc ðvajVa j ÞÞ

jVc j ; vai 2 Va

(24)

max simðeT Þ ¼ maxðSimvc1
ðva1

Þ; Simvc1
ðva2

Þ; :::; SimvcjVc j
ðvajVa j ÞÞ; vai 2 Va; vcj 2 Vc (25)

avg FuzSuccessðetÞ ¼
P

va2Va
Fuz successðvaÞ
jVa j

(26)

max FuzSuccessðeT Þ ¼ maxðFuz successðva1
Þ; :::;Fuz successðvajVa j ÞÞ; vai 2 Va (27)

avg FuzUnSuccessðeT Þ ¼
P

va2Va
Fuz unsuccessðvaÞ

jVa j
(28)

max FuzUnSuccessðeT Þ ¼ maxðFuz unsuccessðva1
Þ; :::;Fuz unsuccessðvajVa j ÞÞ; vai 2 Va (29)

avg JaccardSimðeT Þ ¼
P

va2Va
Jaccard simðvaÞ
jVa j

(30)

max JaccardSimðeT Þ ¼ maxðJaccard simðva1
Þ; :::; Jaccard simðvajVa j ÞÞ; vai 2 Va (31)

avg DegreeðeT Þ ¼
P

va2Va
DegreeðvaÞ
jVaj

(32)

max DegreeðeT Þ ¼ maxðDegreeðva1
Þ; :::;DegreeðvajVa jÞÞ; vai 2 Va (33)

avg rankðeT Þ ¼
P

va2Va
rankðvaÞ

jVaj
(34)

max rankðeT Þ ¼ maxðrankðva1
Þ; :::; rankðvajVa j ÞÞ; vai 2 Va (35)
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these are applied, some parts of the information on the feature values that exist in the

collaborations are omitted. To preserve more information, a similar approach proposed

by Torres-Carrasquillo et al. (2002) for converting variable length speech signal to a

feature vector with fixed length is used. In this approach, first a clustering algorithm is

applied to cluster all the scholars based on the value of the selected feature or features

into k groups (clusters). Next, the frequency of different groups of scholars in each

collaboration is determined. This approach is illustrated in Fig. 8 where the scholars are

clustered into three groups in their corresponding circle. First, based on the feature value

of the scholar members ðf1; f2; f3; f4; f5; f6Þ, the most similar group to the members is

determined. Next, the frequency of each group in the collaboration is computed. In this

manner all collaborations will be mapped to feature vectors of size three. These feature

vectors determine the number of times each group of the scholars appears in the

collaboration.

For instance if the similarity of scholars to concepts is considered as the feature and k is

set to be 3, cluster 1 can be considered as the scholars with low similarity, cluster 2 as the

scholars with medium and cluster 3 as the scholars with high similarity. For computing the

features of each collaboration based on the similarity to concepts, in addition to the average

and maximum of the scholars’ similarity, we count how many scholars with low, medium

and high similarity exist in the collaboration and consider these frequencies as the feature

value. When these features are combined with the average and maximum, preserve more

information about the members of the collaboration.

Experiments

Exploring parameter setting

There are two parameters in the ranking algorithm, the iteration number mentioned in

‘‘Hypergraph’’ section and a in Eq. 3. For the iteration number, the algorithm is stopped on

convergence. To explore the influence of a, for each value, the ranking algorithm is applied

to compute the similarity of each scholar member to concepts. Next, a linear regression

model is used for the prediction of the collaborations’ citation counts based on the features

Scientific Collaboration

f1, f2, f3, f4, f5, f6

Cluster1 Cluster2 Cluster3

Cluster1 Frequency Cluster2 Frequency Cluster3 Frequency

2 3 1

The values of the
selected feature for
scholar members

Scholar

Concept

Fig. 8 Computing the feature vector for a collaboration based on the values of the selected feature
ðf1; f2; f3; f4; f5; f6Þ using KMeans with 3 clusters
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avg sim and max sim (explained in ‘‘Feature extraction’’ section). Collaborations of the

year 2002 are used for setting the parameter and the correlation coefficient of the linear

model is used as the evaluation metric. Figure 9 shows the performance measured as a

function of a. The ranking algorithm obtains the best result when a is between 0.8 and 0.99.

For a ¼ 1, the correlation coefficient is 11.14 % which drops dramatically because the

value of 1 means that there isn’t any relationship between the ranking result and the query

vector. This value is not shown in Fig. 9 to illustrate the differences between the other

correlation values more clearly.

Experimental results

In the first set of experiments, we examine the correlation of the features resulted from the

ranking algorithm (explained in ‘‘Background’’ section) with the citation counts of the col-

laborations. For each collaboration ðeTÞ, features including max sim, avg sim, max rank

and avg rank are extracted. For computing these features, a is set to be 0.9 and the algorithm

is stopped on convergence. Next, the Spearman Correlation test is applied to measure the

correlations. This correlation measure is selected because the real values of citation counts are

not important and only the collaborations that are more successful in relation to other col-

laborations should receive higher ranking scores. The correlations are shown in Fig. 10 in

chart bars. In all cases, the p-value is less than 2.2e-16, indicating that these correlations are

statistically significant. These correlation values show that the extracted features will be

helpful in discriminating between successful and unsuccessful collaborations.

In the second experiment, our goal is to show that making a joint hypergraph (scholar-

concept-hypergraph) for capturing both scholars and concepts relations is a better modeling
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Fig. 9 Exploring the influence of the parameter. The correlation coefficient of the linear model is used as
the evaluation metric
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approach (for score propagation) than a hypergraph that only includes the scholars and

their social relations (scholar-hypergraph). In the second modeling approach, scores

propagate just through the social relations among the scholars while in the first one, the

semantic relations among the concepts also affect on the final scores.

For each collaboration from the year 2000–2006, the max sim and avg sim are

extracted while a scholar-concept-hypergraph is applied for modeling the collaboration

relations. In the case of scholar-hypergraph, the same approach is used for computing the

similarity of scholars to concepts (explained in ‘‘Feature Extraction’’) but the query vector

is formed using below equation.

yci ¼
AT�10;T�1½i; indexðvcÞ�; scholari has atleast one publication on vc

0; otherwise

�
; 1� i� ns

ð36Þ

where i is the ith element of the query vector which corresponds to the ith scholar, index(c)

is the index of the desired concept, AT�10;T�1 is the transition matrix of the hypergraph

GT�10;T�1 and T is the target year. So those scholars who has at least one publication on vc
(are directly connected to vc) are assigned a non-zero initial score equals to the weight of

the relation that connect them to vc. Next, the ranking algorithm is applied to propagate the

scores (similarity values of the scholar members to concepts) among the scholars through
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Fig. 10 a correlation between the max sim with the citation counts of the collaborations; b correlation
between the avg sim with the citation counts of the collaborations; c correlation between the max rank with
the citation counts of the collaborations; d correlation between the avg rank with the citation counts of the
collaborations
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the social relations. Finally the features of max sim and avg sim are computed based on

the similarity values of the scholar members to concepts.

The Spearman correlation of these features with the citation counts of the collaborations

are illustrated in Fig. 11. As observed, involvement of concept-concept relations in the

score propagation process helps to extract better features. These results demonstrate the

worth of the inclusion of the semantic relations among the concepts for modeling the

collaboration relations.

In the third experiment, we examine if the features of avg sim and max sim which are

derived from the scholar-concept-hypergraph are better than the features that are extracted

just based on the direct connections between the scholars and concepts. So the question is

that ‘‘should we consider some skill level for a scholar who doesn’t have any publications

on a concept but is in the neighborhood of scholars and/or concepts that are related to the

concept?’’. To answer this question, we compare avg sim and max sim with two other

features. The first feature computes the scholar’s skill level for concept vc based on the

citation counts of the scholar’s publications on the concept using below equation.

citation avgðva; vcÞ ¼
Pnca

k¼1 citationðpkÞ
nca

ð37Þ

where pk is the kth article of the scholar va on the concept vc and citationðpkÞ is the citation

count of pk and nca is the number of the total scholar’s publications on the concept vc.

For each scholar member of the collaborations, this feature is computed and the average

and maximum across all the members of each collaboration are considered as the features

of the collaborations.

The second feature is computed based on the entries of the transition matrix AT�10;T�1

(Eq. 4). The score of the scholar va for the concept vc is:

weightðva; vcÞ ¼ AT�10;T�1½indexðvaÞ; indexðvcÞ� ð38Þ

Where indexðvaÞ is the index of the scholar va and indexðvcÞ is the index of the concept vc.

The average and maximum of this feature across all the members of each collaboration are

considered as the features of the collaborations.

The Spearman correlation of these features with the citation counts of the collaborations

are shown in Fig. 12. As observed features which are extracted based on the score
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Fig. 11 a Comparison of two modeling approaches (concept-scholar-hypergraph and scholar- hypergraph)
based on the max sim. Spearman correlation is used as the evaluation metric. b Comparison of two
modeling approaches (concept-scholar-hypergraph and scholar-hypergraph) based on the avg sim. The
Spearman correlation is used as the evaluation metric.
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propagation are better. This shows that the skill level of a scholar for a concept should be

determined in the light of both direct and indirect relations of the scholar to concept.

In the forth experiment, we examine the effect of extending the scholar-concept

hypergraph to include venues where the articles are published. In this extended hypergraph

(E-hypergraph), each hyperedge is composed of three types of vertices: scholar, concept

and venue. Using this E-hypergraph as the modeling approach, we explore if this approach

results to a better estimate of the scholars’ expertise level (similarity to the concepts). The

max sim and avg sim are considered as the features and correlation (Spearman) with the

citation count of the collaborations as the evaluation metric. Our experiment shows that the

correlation values don’t change compare to the situation that scholar-concept hypergraph is

used for modeling and adding the venues just increases the time complexity of the ranking

algorithm.

Evaluation of the predictive model

In this experiment, classifiers are trained as the predictive models to discriminate between

successful and unsuccessful collaborations. A collaboration in year T is considered suc-

cessful, if the number of citations gained within a time frame of five years after publication

is more than the median of citation counts of all collaborations in the same year. We use

median because the distributions of citation counts are skewed and median would be a

better measure for the center of the distributions.

To assure that our results are not subject to the type of the classifier, classification is

done using different classifiers including Naive Bays, Multilayer Perceptron (MLP) and

Random Forest. For training and evaluation of these classifiers, RWeka8 is applied. Also,

to avoid overfitting, we use 10 fold cross validation to set the parameters of the classifiers.

Since the cost of considering an unsuccessful collaboration as a successful one is more

than that of the successful collaboration as unsuccessful one, we evaluate the classifiers

based on F0:5 measure that weight precision twice as much as recall and is computed using

the below equation:
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Fig. 12 a Comparison of the maximum (across all the members of each collaboration) of different features.
b Comparison of the average (across all the members of each collaboration) of different features. The
Spearman correlation is used as the evaluation metric

8 http://cran.r-project.org/web/packages/RWeka/index.html.
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F0:5 ¼ ð1:25Þ � precision � recall
0:25 � precisionþ recall

ð39Þ

The result of the evaluation of the best classifier (Random Forest) is shown in Table 5.

First the classifiers are trained using all the features listed in Table 4 except the features

extracted from the hypergraph (avg sim, max sim, avg rank and max rank). Next, each

time a new feature set is added to the basic features and examined how it would affect the

performance (For each feature set we report the best result among all the trained classi-

fiers). As observed, the features extracted from hypergraph (avg sim, max sim, avg rank

and max rank) are good enough to discriminate between collaborations for the defined

threshold. Also adding them to the other features increases the classifier performance based

on F0.5 measure.

To determine the worth of the features, we measure their information gain. The result is

shown in Table 6. As observed, similarity of the scholars to the concepts has the highest

information gain, therefore is the best feature. We choose this feature to cluster the scholars into

three clusters (the number of clusters was determined experimentally) using KMeans algo-

rithm. The obtained clusters are used to convert the values of this feature into collaboration

features as explained in ‘‘Feature extraction’’ section. As observed in Table 5, adding KMeans

concept similarity to the basic feature set contributes to the performance improvement.

We also examine the effect of the proposed features on the performance of two

regression models for the prediction of the collaborations’ citation counts. The correlation

coefficients and root mean square errors are shown in Table 7 for different feature sets

while linear regression and MLP9 have been used as the predictive models. As observed,

the proposed features, especially the features extracted from hypergraph, significantly

Table 5 Result of evaluation of the classifier with different feature sets

Precision (%) Recall (%) F0.5 (%)

Basic features 65.4 80.9 68.00

Features from hypergraph 64.2 71.5 60.61

Basic features ? features from hypergraph 67.4 77.4 69.19

Basic features ? K means similarity to concepts 66.2 80 68.56

Bold value indicates the best result

Table 6 Ranking the features based on their information gain

Feature name Information gain

avg sim&max sim 0.086155

avg FuzSuccess&max FuzSuccess 0.066635

avg JaccardSim&max JaccardSim 0.04661

avg rank&max rank 0.01163

avg hindex&max hindex 0.010235

avg gindex&max gindex 0.009445

avg citationAvg&max citationAvg 0.006270

avg degree&max degree 0.004295

9 Multilayer Perceptron.
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improve the performance of both models. The best results are obtained when all features

are used. Another point is that a non-linear model like MLP acts better than a linear model

in capturing the relation between the collaboration success and the collaboration charac-

teristics. This shows that for the task of research collaboration formation, optimization of

linear combination of different collaboration characteristics is not a good choice.

Finally, the effect of adding a feature based on team diversity is explored. The h-index

is considered as the expertise level of the scholars and the entropy-based index (Liang

et al. 2007) is used as the measure of diversity between the h-index of the scholar members

in each collaboration:

EntropyðeTÞ ¼ �
X3

i¼1

freqilnðfreqiÞ ð40Þ

where freq1; freq2; freq3 represent the fraction of the scholar members with low, medium

and high h-index in the collaboration respectively. The thresholds listed in Table 8 are

used for quantization of the h-index values to these categories. These thresholds are

determined based on the distribution of the scholars’ h-index.

The result is illustrated in Table 9 which shows that adding this feature contributes to

improve the classifier performance.

Discussion

While there are lots of works especially in the field of social science which examine the

factors underlying effective research collaborations, but there is a big gap between these

studies and electronic systems designed to help researchers find collaborators. Based on the

research agenda and the requirement set for an effective collaborator discovery system

proposed by Schleyer et al. (2012), there are many unanswered questions about how to best

Table 7 Result of evaluation of the regression models with different feature sets

Linear model MLP

Correlation
coefficient (%)

Root mean
squared error

Correlation
coefficient (%)

Root mean
squared error

Basic features 39.51 28.50 50 27.00

Basic features ? features from
hypergraph

45.54 27.62 61.19 24.62

Basic features ? K means
similarity to concepts

39.81 28.46 58.56 25.26

All features 45.62 27.60 63.95 24.00

Table 8 Thresholds for quanti-
zation of the h-index values

Low h index\7:42

Medium 7:42� h index\14:84

High h index� 14:84
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use information technology to facilitate research collaborations. As the exploitation of

collaboration network is essential in these systems (Schleyer et al. 2012), in this article an

attempt is made to understand how to exploit the information embedded in collaboration

networks. We benefit the link structure among the scholars and also among the scholars

and the concepts to extract set of features that are correlated with the collaboration success.

The experiments on a dataset collected from the Scival Expert, demonstrate that the new

feature space improves the performance of the prediction. So these features would be

valuable to incorporate in collaborator discovery systems while the citation count is

considered as the success measure.

Future work

Research Networking Systems provide rich information about scholars and their research

activities. VIVO and Scival Expert are popular systems with growing application by

universities and institutions. In this article, we just considered the published articles as the

research activity of the scholars and ignored other activities like grants, published books

etc. that could contribute to a better estimation of the scholars’ competence in a given

concept. Also, in this article, we limit our dataset to the collaborations in the field of

medicine. The effect of the proposed features can be studied for collaborations in other

fields. Our next goal is to use the result of this study in the My Dream Team Assembler’

project which is a tool to help form teams of experts.
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