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ABSTRACT

Analytical modeling of customer preferences in product
design is inherently difficult as it faces challenges in modeling
heterogeneous human behavior and product offerings. In this
paper, the customer-product interactions are viewed as a
complex socio-technical system and analyzed using social
network theory and techniques. We propose a Multidimensional
Customer-Product Network (MCPN) framework, where separate
networks of “customers” and “products” are simultaneously
modeled, and multiple types of relations, such as consideration
and purchase, product associations, and customer social
networks are considered. We start with the simplest unimodal
network configuration where customer cross-shopping
behaviors and product similarities are analyzed to inform
designers about the implied product competition, market
segmentation, and product positions in the market. We then
progressively extend the network to a multidimensional structure
that integrates customer preference decisions with product
feature similarities to enable the modeling of preference
heterogeneity, product association and decision dependency.
Finally, social influences on new product adoption are analyzed
in the same framework by introducing customer-customer
relations together with other product-product and customer-
product relations. Beyond the traditional network descriptive
analysis, we employ the Exponential Random Graph Model
(ERGM) as a unified statistical inference framework for
analyzing multiple relations in MCPN to support engineering
design decisions. Our approach broadens the traditional utility-
based logit approaches by considering the dependency among
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product choices and the “irrationality” of customer behavior
induced by social influence. While this paper is focused on
presenting the conceptual framework of the proposed
methodology, examples on customer vehicle preferences are
presented to illustrate the progressive development of the MCPN
framework from a simple unimodal configuration to a complex
multidimensional structure.

1. INTRODUCTION
Understanding customer preferences, interests, and needs is

critically important in developing successful products [1]. Our
research is motivated by the need to overcome the limitations of
existing quantitative methods for modeling customer preferences
in engineering design. Even though utility-based logit models
such as Discrete Choice Analysis (DCA)[2, 3] have been widely
studied by the design community to guide and optimize design
decisions [4-7], there are several major obstacles regarding their
use in practical design applications:

- Dependency of Alternatives. Standard logit models usually
ignore correlations in unobserved factors over product
alternatives by assuming observations are independent, i.e.,
whether a customer chooses one product is not influenced
by adding or substituting another product in the choice set,
which is often not a realistic situation. Though advanced
logit models have been developed to address this issue by
introducing certain correlation structures among the error
terms, they cannot accommodate dependent decisions
explicitly.
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- Rationality of Customers. The utility-function based
choice modeling approach assumes customers make rational
and independent decisions. However, in reality customers
influence each other, and their socially influenced decisions
can sometimes be considered “irrational.” As such, it is
reasonable to expect that social effects, such as geographical
proximity, communication ties, friendship connections, and
social conformity have a heavy influence on customer
attitude and behavior.

—  Correlation of Decisions. Correlated decisions, such as
consideration decisions, often involve multiple choices
made by the same individual at the same time. It is important
to realize that decisions in such situation are often nested
within one another. For example, the decision of how many
products and what products to consider could be nested.
Unfortunately, classical regression models ignore these
correlations, and therefore, cannot estimate the influence of
the decision outcomes on each other.

- Collinearity of Attributes. To evaluate the underlying
preference for each product attribute, it is often desirable
that preference data has little to no collinearity. However,
revealed preference data is very vulnerable to collinearity as
the data is drawn from the real market. For example, low
price vehicles are more possible to have smaller engine
capacity and as a result, low fuel consumptions. However, it
is hard to tell whether customers are buying cars because
they are low price or because they are fuel efficient. The
presence of collinearity implies that the individual
contribution of each attribute is difficult to evaluate.

To address these limitations, we propose a multidimensional
network analysis (MNA) approach, rooted in social network
analysis for analyzing complex customer-product relations in
support of engineering design decisions. As shown in Fig. 1,
using vehicles as an example, customer-product interactions
form a complex socio-technical system [8], not only because
there are complex relations between the customers (e.g., social
interactions) and amongst the products (e.g., market
segmentation or product family), but also because there exist
multiple types of relations between customers and products (e.g.,
“consideration” versus “purchase”). Our research premise is that,
similar to other complex systems exhibiting dynamic, uncertain,
and emerging behaviors, customer-product relations should be
viewed as a complex socio-technical system and analyzed using
social network theory and techniques. The structure and
topological characteristics identified in customer-product
networks can reveal emerging patterns of customer-product
relations and the interacting effects of product and customer
attributes by taking into account the heterogeneities among
customers and products.

In literature, network analysis has emerged as a key method
for analyzing complex systems in a wide variety of scientific,
social, and engineering domains [9]. The approach provides
visualization of complex relationships depicted in a network
graph, where nodes represent individual members and ties/links
represent relationships  between members. Built upon

conventional network analysis, social network analysis views
social relations in terms of network theory, and the links in the
observed network are explained by the underlying social
processes such as self-interest, collective action, social
exchange, balance, homophily, contagion, and co-evolution [10].

—— Purchase decision
Consideration decision
— Social interaction

&== Feature association
Preference association

Figure 1: Customer-Product Relations as a Complex Network
System

While most existing applications of network analysis are
unimodal or unidimensional that contain a single class of nodes
(either human or non-human artifact) and a single type of
relation, recent social network research has emphasized on the
development of multidimensional social networks that include
both human and non-human technological elements [11] as
nodes and multiple types of relations represented by either non-
directed or directed links. Researchers have shown that the
network dynamics of a combined human and technology
network can shape how people conceive a new technology, as
well as whether and how they will use it [12]. In our research,
the complex customer-product relations are represented as a
multidimensional network (Fig. 1) where products are treated as
non-human technological artifacts. Multiple relationships, such
as social network relations among customers, association
relations among products, as well as preference relations
between customers and products, are considered.

Beyond most existing network analyses that are descriptive
in nature, our research introduces the Exponential Random
Graph Model (ERGM) as a unified statistical inference
framework for MNA. ERGM is increasingly recognized as one
of the central approaches in analyzing social networks [13-15].
ERGMs account for the presence (and absence) of network links
and thus provide a model for analyzing and predicting network
structures. ERGMs have several advantages: (1) Network links
are modeled to be interdependent in ERGM rather than assumed
to be independent, (2) ERGMs can incorporate binary,
categorical, and continuous node attributes to determine whether
they are associated with the formation of network links, (3)
ERGMs are capable of characterizing local and global network
features; (4) ERGMs can be applied in flexible ways to many
different types of network and relational data; (5) Data used for
fitting ERGMs can be cross-sectional or longitudinal (change
with time); and a dynamic model can be built to study the
emergence and dynamics of a network.
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This paper employs MNA for the study of customer-product
relations as a complex Multidimensional Customer-Product
Network (MCPN) in the context of engineering design. While
the proposed MCPN is widely applicable for analyzing and
predicting any type(s) of preference relations between customers
and products, the detailed methodological development in this
paper is limited to modeling customer consideration preferences
among a set of competing products and examining how the
results can inform the values of product attributes in design. The
rest of the paper is organized as follows. Sec. 2 introduces the
technical background and recent accomplishments in social
network research. Sec. 3 describes the development process of
MCPN progressively from a unimodal structure to a
multidimensional structure with multiple types of nodes and
links. Sec. 4 develops two network implementations using the
vehicle preference data in China market to illustrate the network
approaches - a descriptive approach on the unimodal structure
and a statistical inferential technique using MCPN. We have
chosen these two implementations because each enables us to
gain new insights into the issues that we have not addressed
specifically in the traditional Discrete Choice Analysis. Finally,
Sec. 5 discusses the pros and cons of the MNA approach and the
opportunities for future research.

2. TECHNICAL BACKGROUND

2.1 Network analysis in product design and market study
Network analysis has received considerable interest in
product design and market study. In product design, network
analysis has been used to characterize a complex product as a
network of components that share technical interfaces or
connections. Using the network metrics such as “centrality”,
Sosa et al. [16] defined three measures of modularity as a way to
improve the understanding of product architecture. Based on
Sosa’s work, Fan et al. [17] developed a bottom-up strategy for
modular product platform planning. A recent work by Sosa [18]
found that proactively managing the use of network structure
(such as hubs) may help improve the quality of complex product
designs. Network analysis has also been applied to studying
designers’ network for understanding organizational behavior
[11] and improving multidisciplinary design efficiency [19]. In
market study, text-mining apparatus has been integrated into a
network analysis framework to understand customers’ top-of-
mind associative network of products based on the large-scale,
customer generated data posted on the Web [20]. However, the
constructed product-feature network is unidimensional, without
including customers and their relations to products in the same
network. In contrast to the existing unimodal product network
analysis approaches, our multilevel multidimensional customer-
product network (MCPN) is built with both product and
customer nodes, together with product feature associations and
customer social network, to understand how customer decision-
making interacts with product attributes and how social
influence affects individual decisions for new products.

2.2. Modeling the impact of social influence
Modeling the impact of social influence has received
increasing attention in product design [21]. A comprehensive

study of how peer influence affects product attribute preference
was provided by Narayan et al. [22] who modeled three different
mechanisms of social influence. By combining traditional
conjoint analysis on product features with peer influence, their
work showed that peer influence causes people to change
perspective on product importance, and that some product
attributes are more sensitive to change than others. However, the
approach requires a strict format of survey data to evaluate the
attitude change before and after exposure to peer influence.

In modeling social influence in customer vehicle choices, a
simulation-based approach has been developed in our earlier
research to capture the dynamic influence from social networks
on the adoption of hybrid electric vehicles [23]. The social
network impact is captured via introducing “social influence
attributes” into the discrete choice utility function. The effects of
these attributes are assessed through the social network
simulation, where the network was constructed based on the
“social distances™ measured by the dissimilarities of customers’
social profiles. Similar assumptions of social influence spreading
over a small world network have also been found in [24, 25]. In
this research, a multidimensional network approach is proposed
to  measure simultaneously  customer-customer  social
interactions together with customer-product preference relations
for assessing social impact on preference decisions. A
simulation-based social network construction approach, similar
to [23], is applied to convert customer attribute vectors into
relational data that takes into account interdependence of
attributes and the interactions between customers and products.

2.3. Advances in Social Network Analysis

In the past decade, social network scholarship has made a
concerted effort to move from describing a network to
developing techniques that explain the emergence and dynamics
of networks. Development of analytic techniques to explain the
emergence of networks is often motivated by multitheoretical
multilevel (MTML) models [10]. Social network models are
multi-theoretical because of a growing recognition among social
networks researchers that the emergence of a network can rarely
be adequately explained by a single theory. Therefore, these
models combine disparate theoretical generative mechanisms,
such as self-interest, collective action, social exchange, balance,
homophily, proximity, contagion, and co-evolution. Multilevel
network data categorizes nodes into different levels, and the
network links represent relationships between nodes within and
across different levels. A unimodal (one-mode) network can be
defined within each level, and a bipartite (two-mode) network
can be defined between nodes from two levels. These models are
also multilevel because the emergence of a network can be
influenced, for instance, by theories of self-interest that refer to
characteristics of actors (at the individual level), theories of
social exchange that describe links between pairs of actors (at the
dyadic level), theories of balance that explain the configuration
of links among three actors (at the triadic level), and theories of
collective action that explain configurations among larger
aggregates of actors (at the group or network level). The network
configurations at multiple levels capture the interdependency
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among links and between links and nodal attributes to represent
the underlying behavior patterns.

ERGMs provide the statistical inference framework for
MNA. Technically, we can define matrix Y as a random graph in
which rows and columns represent customers and products,
respectively. ¥; = 1 refers to a relation, such as the preference
decision between customer i and product j, and 0 otherwise.
ERGMSs have the following form:

B(Y =) =——exp{07z(y)} M
c(0)

where (i) y is the observed network, a random realization of Y;
(i) z(y) is a vector of network statistics corresponding to certain
network configurations in y, and the settings of product and
consumer attributes; (iii) 0 is a parameter vector indicating the
effects of the network statistics; (vi) ¢ is the normalizing constant
that ensures the equation is a proper probability distribution.
Eqn. (1) suggests that the probability of observing any particular
graph (e.g. MCPN) is proportional to the exponent of a weighted
combination of network characteristics: one statistic is more
likely to occur if the corresponding is positive. Our research aims
to interpret the meaning of these parameters (network effects) in
order to understand customer-product relations for product
design. More details are provided in Sec. 3.3.

3. AMULTIDIMENSIONAL NETWORK APPRAOCH FOR
PREFERENCE MODELING

3.1. The Multidimensional Customer-Product Network
(MCPN) Framework

In this paper, we recast the problem of modeling customer
preferences as network modeling of customer-product relations.
We view engineering products as an inherent part of the
expanded social network along with human actors. Fig. 2
describes the structure of the MCPN framework, which is
characterized by two classes of nodes at two layers (“product”
and “customer”) and multiple types of relations within and
between the two layers.

The product layer contains a collection of engineering
products P (e.g., vehicles, electronics and appliances, software).
Products are connected by various links which can be either
directed or non-directed. Directed links often involve product
hierarchy or preference, while non-directed links imply product
similarity or association. Product attributes or features,
quantitative (e.g. fuel efficiency, horsepower) or qualitative (e.g.
safety, styling), can be taken into account as nodal attributes.
Similar attributes/features between products are represented as
association links in the product network. Alternatively, product
associations can be identified by their co-consideration relations
from customers. The customer layer describes a social network
consisting of a customer population C who make decisions or
take actions. Each customer has a unique profile (e.g.,
socioeconomic attributes, purchase history, etc.) which
potentially affects customer preference decisions. Links between
two customers represent their social relations, such as friendship
or communication. The structural tendencies of these social
relations reflect the underlying social processes for creating and

maintaining links such as homophily and proximity [10].
Customer-product relations are indicated by various human
activities such as purchase and consideration decisions. The
customer-product links are created between two sets of nodes
from two adjacent layers, representing customer preference. As
shown in Figure 2, if a customer purchase a product, there will a
solid link between the customer and product nodes. If customer
considers a product, the link between the two nodes are marked
as a dashed line. As noted, a customer can consider several
products at the same time while the final purchase is only one or
none. These preference links can be flexibly constructed by
various sources of data, e.g., survey data, transaction data, and
user-generated text data.
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Figure 2: Multidimensional Customer-Product Network

As seen, the proposed MCPN framework can capture rich
information on dependency in a complex socio-technical system
so as to assist product design decision-making. A combined
analysis of all relations mentioned above allows designers to
evaluate product decisions not in isolation, but with expectation
that the market system will react to the planned decisions, and
any design change may easily affect other connected entities
across the network in ways that were initially unintended.

3.2. Unimodal Network Analysis of Product Associations

Our development of MCPN started with the unimodal
network analysis to a single layer network with only product
nodes and associations. The unimodal network can be viewed as
a compressed but simplified version of the more complicated
bipartite (customer-product) networks by projecting it to a single
layer [9]. The unimodal network enables designers to explore the
use of descriptive metrics in identifying aggregated product
associations that can reveal the implied product similarity and
diversity, product market competence, product market
segmentation, and other opportunities for design improvements.

The links in a product association network can be
constructed in many ways. For example, using the customer
preference data, a customer-driven product association network
can be established, where the links between products reflect the
proximity or similarity of two products in customers’ perceptual
space. Alternatively, a feature-driven product association
network can be established with the help of product specification
data, where the association between products can be determined
by measuring the similarity of product attributes/features from
designers’ point of view.
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Table 1: Examples of Network Structural Analysis for Analyzing Customer-Driven Product Associations

Network Analysis

Solution Techniques

Network Topology

Centrality involves the identification of the ‘most
competitive’” products in the network [9]. We assume
that more central (or more connected) products have
higher levels of survivability in market competitions as a
result of its structural advantageous.

Centrality

Measuring centrality can be based on various
properties of a node, e.g.,

LAND ROVER RANGE ROVER

number of direct HYUNDAI SONATA Rass
: HONDA o
connections to all other nodes (degree), Sl o Lo
minimum distance to all other nodes SRy
. DODGE -
(closeness), and maximum occurrence on the caLperEl | CHRYSLER ASPEN

path of two other nodes (betweenness) [9].

]
B vowvosso
MAZDA3

Community refers to the occurrence of groups of nodes

The modularity maximization method [26]

LAND ROVER RANGE ROVER
VOLVO 580

across the population.

find the best hierarchy in a polynomial time.

Foy that are more densely connected internally than with | can be used as the objective function to I HYUNDAI SONATA
£ | the rest of the network [26]. If appropriate communities | capture the quality of a network structure. cvic LINEOLN MKX
E are detected, the network can be collapsed into a | The problem is solved as an NP-hard S
S| simpler representation without losing much useful | optimization problem. o CHRYSLER ASPEN
information. VOLVO 60
MAZDA3
Hierarchy is formally defined as a strict partially ordered | To find local hierarchies of nodes, centrality LAND ROVER RANGE ROVER
o.| set  which can be represented as a directed network | metrics can be applied as well to a directed HYUNDAI SONATA g
ﬁ [27], where each element of the set is a node and the | network configuration. To bring global order ?.3?3“ R — LiNGE R MK
E partial ordering (P1<P2) gives an edge from P1 to P2. The | to the nodes, heuristic search algorithms, e.g. S Ry T
T | directed link reflects customers’ aggregated preference | Google’s PageRank [28], can be employed to E’fﬁ’?fni, % w ACFIRYSLER ASPEN

] VOLVO 560

MAZDA3

The descriptive network analysis involves the computation
of topological measures to assess the position of nodes and the
implication of structural advantages. Examples for analyzing
customer-driven product associations are provided in Table 1.
Centrality [29] measures a product’s competitiveness, indicated
by its level of connectivity to other products. Community [26]
analysis identifies products with close connections as a market
segment. Network hierarchy [30] is illustrated by the directed
links which encode preference rankings.

Although the unimodal network approach can describe
interdependencies in relational data, the method cannot provide
quantitative assessment of product attributes for a particular
group of customers. Further, the unimodal network analysis
studies customers” averaged (aggregated) preference across the
population. Advanced network modeling approaches that
capture disaggregated preference behaviors of individual
customers are needed as examined next.

3.3. Analyzing Multidimensional
Product Associations

To model heterogeneous customer preferences in products
with close associations, we integrate the product association
links with customer-product preference relations as a
multidimensional network (see Fig. 3). By introducing the
information from the second mode (i.e. customers), we aim to
develop a network model capable of capturing customer
preference heterogeneity and multiple dependent decisions
considering product feature associations. The information
obtained can be used to identify the right product configurations
for a targeted group of customers in product design.

Beyond existing network approaches that are mostly
descriptive in nature, we use ERGM as a unified statistical
framework to analyze the MCPN. In ERGMs, the observed
network is considered one realization of an underlying

Network Considering

probabilistic distribution, without assuming the independence of
nodes or links. A local topological configuration in the network,
i.e. a set of connected nodes and links, is regarded as an
exploratory variable representing the structural features of
potential interest. Networks in the distribution are assumed to be
“built up” from the localized patterns represented by the
structural features. ERGM literature has established more than
20 different types of effects [13] for describing the various forms
of dependence that exist in the relational data within social
networks. Examples of effects, their configurations, and
interpretations are provided in Table 2.

Nodes: Relations:
@ Customer —— Feature association
M Product Purchase decision

- - - Consideration decision
Figure 3 : Multidimensional Network Considering Product
Associations
The network effects fall into three categories: pure
structural effects are related to well-known structural regularities
in the network literature; attribute-relation effects assume the
attributes of products/customers can also influence the formation
of network links in addition to the structural endogeneity in the
network; the product association relations can be characterized
by the cross-level effects that integrate customer preferences with

product similarities.
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Table 2: Examples of Interpretations of Network Effects in MCPN

Pure Structural Effects

Configuration

Interpretation

[A] Density

This effect captures the baseline propensity of forming a link. It is similar to the intercept in
a regression model

[B] Alternating k-stars for
products

This effect measures the dispersion of the degree distribution. Alternatively, it can be
thought as a test of the “rich get richer effect”. Example: A positive parameter indicates that
the network links are centralized around a few high-degree nodes of products.

[C] Alternating k-cycles for
customers

=

This effect captures the propensity of customers to engage in closed structures. Example:
Two customers considered the same product also consider some other products together

Attribute-Relation Effects

Configuration

Interpretation

[D] Main effect

This effect captures whether the binary attribute or higher scores on a continuous attribute
tend to express more links. Example: A significant negative parameter for vehicle fuel
consumption means fuel efficient cars are more likely to be considered by customers.

[E] Interaction effect

B—O
o

This effect captures the interaction of the nodes between different types. Example: A
significant positive coefficient for family size of customers and vehicle size of products
suggests customers from large families tend to consider large size cars.

Cross-level Effects

Configuration

Interpretation

[F] Association based
closure effect

>

This effect captures whether a closed structure is more likely to occur involving two product
nodes with an association link. Example: A negative significant coefficient means that
customers do not tend to consider two cars with many common features at the same time.

EProduct w/ attributes

@® Customer w/ attributes

0 Product w/o attributes O Customer w/o attributes

Once the network effects of interest are identified by
designers, their significance can be determined by estimating the
model parameters of an ERGM via likelihood maximization,
given the observed network data. As the exact maximization of
the likelihood function requires a summation over all possible
configurations of the network and is computationally
demanding, approximation techniques (e.g., maximum
pseudolikelihood [31], Markov Chain Monte Carlo maximum
likelihood [32]) can be employed to find the estimates of effects.

Compared to a unimodal network (Sec. 3.2), a
multidimensional network is a more natural way to model
relations between two different classes of nodes and non-
hierarchical association relations between products. Moreover,
its capacity to preserve two types of nodes allows researchers to
parse out the unique contribution of different types of nodes to
the overall network structure. Its ability to integrate product
networks and customer-product relations allows researchers to
model interdependent product relations and correlated
preference decisions explicitly, without specifying complicated
error structures as often done in DCA.

3.4. Analyzing Multidimensional Network incorporating
Social Influence

To account for the effect of social influence on customer
preference decisions, we further expand the multidimensional
network structure to simultaneously measure within-layer social
relations, within-layer product associations, and between-layer
customer-product relations (Fig. 4).

The proposed multidimensional network allows the
evaluation of both the “peer effect” and the more general “crowd
effect” [33], depending on how product associations and social
relations are defined. Relations between customers are used to

model “peer effect” on customer attitudes and preferences. The
term “peer” has a broad meaning which may include “friends,”
“neighbors,” “experts,” “relatives” or even “online reviewers”
with whom customers may exchange information about new
products. The preference hierarchies among products, as defined
in Sec. 3.2, can be used to capture the effect of “social crowd”.
The evaluation of effects is done by assessing the structural
tendencies of networks informed by social influence theories
(Table 3). Using ERGMs, one can quantify the effects of social
influence by statistically estimating the extent to which structural
tendencies implied by social theories influence the probabilities
of the observing network. Similar to the network effects in Table
2, customer and product attributes can be incorporated into the
social influence structures for investigating how social influence
varies across customers and products.

Nodes: Relations:
@ Customer Feature association
M Product —> Preference association
—— Purchase decision
- - - Consideration decision
——— Social interaction
Figure 4: Multidimensional Network Consideration Social
Interactions

Due to the complexity of data collection, customer social
network data is often not collected in consumer surveys. An
alternative is to construct social relations through network
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simulations [23], based on certain hypotheses of network
structure and “social distance” measured by the collected
customer profiles. For example, based on the theory of
homophily [34], we can assume that two nodes with shorter
social distance (similar customer attributes) are more likely to be
connected. Unlike the prior research that incorporates social
influence as customer attributes, this research employs the
ERGM to assess the social influence effects. In theory, one
should draw more reliable conclusions based on the results from
the network approach, because of its capability of handling
correlated node attributes and interdependent link relations, and
thus avoids faulty inferences on covariates [35].

Table 3: Examples of Social Influence Effects in Multidimensional
Network

Social

Influence Eff. Contig.

Interpretation

When comparing two products under
consideration, a customer is more likely
to purchase the one favored by the
majority of customers.

Crowd effect
on purchase

Customers tend to purchase the product
that their “peers” recommended, either
through use or discussion.

Peer effect on
purchase

O Product w/o attributes O Customer w/o attributes

4. CASE STUDY — VEHICLE PREFERENCE MODELING

4.1. Using Unimodal Network for Modeling Vehicle
Associations and Hierarchies

Two implementations on modeling customer vehicle
preference in the growing China market are presented to
demonstrate the proposed methodology. In the first
implementation, we demonstrate the unimodal network analysis
(Sec. 3.2) for identifying aggregated product associations and
hierarchical preference relations. Beyond existing literature, our
work utilizes both consideration and purchase data in market
surveys to derive relationships among vehicle products for
understanding customer preferences and product competitions.
We develop two types of product association networks — a
vehicle association network with unidirected links showing the
similarity of products, and a vehicle hierarchal network with
directed links indicating preference hierarchies.

The two vehicle association networks are constructed using
2013 New Car Buyers Survey (NCBS) data provided by an
independent research institute in China. The dataset contains
49,921 new car buyers who considered and purchased from a
pool of 389 vehicle models in 2013. Both the set of considered
vehicles and the final purchase are recorded for each customer.
Customer demographics and product information are also
reported by respondents.

The vehicle association network is created to aid the analysis
of customer consideration decisions by linking any pair of
vehicles if both vehicles are considered by the same consumer in
his (her) consideration set. The association link is viewed as a
form of similarity or closeness between any two vehicles in
customers’ minds. The link strength is quantified by /if7 to reflect
how often the two products are compared by a population of

customers. The lift between product i and product ; is defined as
the probability of co-consideration over the probability that they
are being considered individually. The probability value is
approximated by the percentage of product (co)occurrence
recorded in NCBS data.

o Pr{co-consider i and j}
lifi(i, j) =

Pr{consider i} - Pr{consider j} @

To prune the network links, a thinning threshold at | is
chosen for the lift value, because a lift greater than 1 has a precise
statistical meaning showing a positive association between the
two products [36]. For example, Honda Guangzhou Odyssey and
Mazda FAW 8 are positively associated, as shown in Fig. 5(i).
The association link implies that the two products have a high
chance of being co-considered. From the customer’s perspective,
it means that a customer considers Odyssey is also very likely to
consider Mazda 8 at the same time.

Figure 5(i). Centrality and Community in Vehicle Association
Network based on NCBS 2013. Nodes are Sized by Network
Degrees and Colored by Network Communities

Il«:edﬁ Fujian Viano

Toyota rd

Figure 5(ii). In-degree Hierarchy in Hierarchical Preference
Network based on NCBS 2013. Nodes are Sized by Network In-
degrees and Colored by Network Communities.

As a measure of network centrality, the node degree
calculates the number of links attached to a node. In the vehicle
association network, products with a higher degree centrality are
those frequently co-considered with many other vehicles by
customers. Examples of high-degree centrality vehicles include
GM SGM Chevrolet Sail, Audi FAW Q5, and Kia Dongfeng
Yueda K2. One interesting observation is that most of the high-
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centrality vehicles are also among the most popular vehicles
considered by customers, though the two quantities are not
equivalent in definition. Another observation is that the node
degrees is not uniformly distributed such that some vehicles are
considered more frequently than others.

For the constructed vehicle network, the product community
analysis is employed following Newman’s modularity method to
determine groups of interconnected vehicles. In Fig. 5(i), the
seven identified communities are marked in different colors. The
product communities inform designer the marketing coverage of
a brand family and marketing competence across several brands.
For example, the yellow community includes most domestic
entry-level sedans (e.g., BYD F6, Chery QQ, etc.), while the
green community is featured by premium SUVs by foreign
manufacturers (e.g., Jeep Grand Cherokee, Land Rover
Discovery, etc.). It is also observed that a product line’s
marketing success is highly influenced by its product positioning
strategy. The successful product lines in the market generally
cover more network communities. For example, as two
marketing leaders in China, Volkswagen and GM have covered
6 out of the 7 network communities, implying a great diversity
of their vehicle products across multiple segments.

As a refinement to the above undirected network, a directed
network is constructed where a link direction is determined
through both consideration and purchase data in NCBS. If for
any pair of vehicles, a customer considers both vehicles but
chooses one over the other, the link direction will point towards
the purchased vehicle. The lift metric shown in Eqn. (3) is
slightly modified to accommodate the evaluation of directed link
strength.

Pr{co-consider i & j, purchase /|

lifi (i = j) = 3)

Pr{consider i} Pr{purchase j |

Again, the links are trimmed to highlight positive
associations. The link direction captures the preference hierarchy
between the two linked products. For example, a bi-directional
(mutual) link between Toyota Alphard and Mercedes Fujian
Viano can be interpreted as the intense competition between the
two products (Fig. 5(ii)), because either vehicle model attracts a
great percentage of customers in consideration. Nevertheless,
Viano gains a slight upper hand in market competition, because
the strength of the link in that direction is stronger.

With a directed network, graph metrics indicating node
hierarchy, such as node in-degree, can be computed to reflect
customers’ aggregated preferences across the population. The in-
degree of a node computes the number of incoming links pointed
to that node. A node with a high in-degree value implies the
corresponding vehicle is very likely to be considered with other
vehicles and is also more preferred in customer choice
(purchase) decisions. For example, Audi FAW Q5 and Ford
Kuga are popular vehicles in choice, which are ranked high in
both degree centrality and in-degree hierarchy. In contrast, Volvo
V40 and Ford Edge have been frequently considered (high
degree centrality in undirected network), but fall behind in
customers’ final choices (low in-degree hierarchy).

Our illustrative example shows that descriptive network
analysis may serve as a useful tool to determine product
positioning and product priorities in the phase of design
planning. Centrality, community, and hierarchy allow designers
to uncover the root-causes of the differences in vehicle sales
under a specific market. These efforts may reveal issues that a
design team could work on, e.g., product recognition (low
centrality rank), coverage and diversity of product lines
(products not appearing in certain communities), product
competence (several vehicles in the same community), and
product configuration (low hierarchy rank), etc.

While analyzing the structural information of a unimodal
network can be useful in describing product associations, there
is a need for an approach to quantitatively evaluate customer
heterogeneous preferences while addressing issues such as
dependent alternatives, multiple decisions, social influence, and
correlated observations. To demonstrate such capabilities of a
network model, our next example employs ERGM in the MCPN
framework with various nodes, relations and attributes included.

4.2. Using MCPN for Modeling Luxury Vehicle Preferences
in Central China

Our second implementation demonstrates the use of
inferential network technique (ERGM) for analyzing the vehicle
MCPN framework (Secs 3.3 & 3.4). This network
implementation also draws from the 2013 NCBS data to
understand customer preference trends in China. With a focus on
the luxury vehicle market, we examine respondents who live in
the central provinces of China and consider only luxury imported
vehicle models in their decision journey. This focused interest
results in a subset data of 378 customers and 65 luxury vehicle
models for modeling and evaluation. As reported by McKinsey,
the top reasons for Chinese customers to choose a luxury vehicle
are: “reflection of social status”, “self-indulgence” and “business
credibility”. Therefore, we expect that socially influenced
decisions are more common in luxury vehicle buyers in China.
In addition, the Chinese auto market is renowned for its
complexity and volatility. Strong regional differences exist as a
result for brand accessibility and lifestyle needs. Because of
these hidden reasons beyond the functionality and design of a
vehicle itself, quantifying the attractiveness of a vehicle attribute
in such conditions becomes even more difficult.

The proposed MCPN integrates a feature-driven product
association network, a customer-product network, and a
customer social network as a unified entity for analysis. The
implementation of the proposed approach goes beyond the
descriptive analysis and consists of three major steps: network
construction, ERGM specification, and ERGM interpretation;
each of these steps is explained in the remaining of this section.

4.2.1. Data Transformation & Network Construction

1) Product Associations. Depending on the product
complexity and the purpose of analysis, product associations can
be built using either the “complete set of features™ or “subsets”.
In this example, association links are constructed using three
vehicle categorical attributes -- body type, brand, and size
segment. The product association link is viewed as a form of
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similarity in the “overall styling” between any two vehicles;
whether they are comparable in terms of price level, safety or
performance, the association link is indicative of how similar the
two vehicles visually “look like”. By converting body type,
brand, and size attributes as product associations, our emphasis
in network inferential analysis using EGRM is on the influence
of other vehicle attributes on customer preferences. Within the
association network construct, the Gower's coefficient [37] is
calculated to determine the existence of a link between any
product pair. Gower’s coefficient has the capability to
appropriately handle continuous, ordinal, nominal and binary
variables as inputs. After several experiments, a global thinning
threshold is then decided to produce reasonably dense network
to ensure reliable ERGM estimates and avoid network
degeneracy in model estimation [13].

2) Preference Relations. We use the bipartite links between
a product and a customer to model customers’ consideration
decisions over vehicle models. The structure of these links is
precisely defined by NCBS data. In the survey, respondents are
asked to report a list of vehicles that they seriously considered,
including the purchased one. The number of consideration
number ranges from 1 to 3. No customer listed more than 3
vehicles, even though the actual number might be higher.

3) Social Relations. Unlike the product association links
which can be flexibly determined, the social links between
customers have more specific meanings in social theories.
Continuing our previous work on network simulation [23], a
social space is constructed based on customer geographical
locations and selected social attributes (age, income, education).
Based on the homophily assumption that two customers with
shorter distance in the social space are more likely to be
connected, a global threshold is chosen to determine if a social
link exists or not. To mimic the properties of real world
networks, we then adjust the social links using the small-world
model [24, 25] to assure the high transitivity (“one’s friends are
likely to be friends™) and low average path length (“six degrees
of separation” between any two individuals). The small world
mechanism provides a viable way to represent social links
through both close and distant connections, implying that
customers are not only influenced by their nearest neighbors in
their social space but also a small number of remote contacts
outside their regular social proximity.

Integrating the three types of network relations together, a
visualization of the construction process for the MCPN structure
is presented in Fig. 6. The complexity of network progressively
increases from product association only in Fig. 6(i), to adding
customer-product relations in Fig. 6(ii), to adding the customer-
customer relations in Fig. 6(iii). As noted, we only include one
type of preference link (consideration) and one type of product
association link (feature-driven) for demonstration. All links are
binary-valued and undirected.

4.2.2. Specification of ERGMs for Multidimensional
Networks

With the constructed MCPN structure, the conditional form
of ERGM is employed to address the question of how one or
more dimensions of networks would affect the structures of the

other networks. Specifically, our research question is about how
product associations and social relations may impact customers’
consideration decisions. As presented in Table 4, the examined
network effects are restricted to a subset of cross-level
configurations and product/customer attributes of different
forms. The choice of which network effect to include depends on
the social theory, hypothesis, and the specific research questions
to answer. Nevertheless, the demonstrated example serves as
guidance for possible effects to consider in vehicle preference
modeling for engineering design.

4.2.3. Comparisons and Interpretations of ERGMs

Estimating the model coefficients for ERGM network
effects is equivalent to fitting a model that gives maximal support
to the data. However, the maximum likelihood estimates cannot
be derived analytically due to the intractable constant in Eqn. (1)
for a reasonable number of nodes. Thus, we employ a stochastic
approximation [38] that relies on MCMC simulations of graphs.

We compare three model specifications based on the same
data set to highlight the benefits of the ERGM approach. Model
1 formulates a bipartite ERGM analogous to a logistic model that
contains only the dyadic actor-relation effects (only customer-
product relation, but no product-product or customer-customer
relation). This model allows the testing of influencing
customer/product attributes in customer preference decisions,
assuming that endogenous structural processes do not exist.
Model 2 parameterizes a multilevel ERGM similar to Model 1
but with the addition of the pure structural effects and the cross-
level product association effect. By comparing Model 2 and
Model 1, we can test whether the addition of these structural
effects may modify some of the attribute-relation effects in
explaining customer preferences. The specification of Model 3
is the most complete model that includes all three types of
ERGM effects. With the integration of the cross-level social
influence effect, peer influences on preference decisions can be
evaluated together with other product attributes, customer
demographics, and structural patterns within the same model.

The interpretation of Model 1 is similar to that for a logistic
model. The significant positive turbocharger and engine
capacity indicate that the presence of the turbocharger and the
increased size of the engine would increase the probability for a
customer to consider a particular vehicle model. The statistically
negative first-time buyer suggests that first-time buyers are
unlikely to enter the luxury vehicle market even though three out
of four new cars are purchased by first-time buyers in China. The
fuel consumption has a significant positive coefficient, meaning
that fuel economy is less important for customers who decide to
purchase a luxury vehicle. The insignificant effect of vehicle
price implies that price is not the main factor to characterize a
popular product model from other models in the luxury vehicle
market. Likewise, the decision of how many vehicles to consider
is less relevant to the houschold income, as seen by the
insignificant income in the table. As noted, most model
coefficients in Model 1 agree with our prior understanding about
China’s luxury market. This means that including attribute-
related effects alone can capture an essential component of the
process underlying the MCPN structure.
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(i) Product relations only

(ii) Preference links added

(iii) Social relations added

Figure 6: Construction of Multidimensional Network using NCBS Data. Products as Blue Squares and Customers as Red Disks.

In Model 2, the addition of the pure structural effects and the
cross-level association effect considerably changes the
interpretation of the underlying preference data. The significant
positive alternating k-stars for products indicates the dispersed
distribution of product nodes such that customers’ decisions
mostly concentrate on only a few vehicle models in the market.
In contrast, the degree distribution is more centered for customer
nodes, as shown by the negative alternating k-stars for
customers coefficient, because customers only consider a limited
number of vehicles (1-3) in NCBS data. The association based
closure effect is an indicator of how likely a customer may
consider two vehicles which are visually similar. The significant
positive coefficient means most people would judge a vehicle by
its appearance and consider multiple vehicles with “similar
look”. Concerning the attribute-relation effects, all the product
effects (turbocharger, engine capacity, fuel consumption)
generate smaller coefficients in magnitudes to their counterparts
in Model 1 and the engine capacity is no longer significant. The
customer effects of first-time buyer and income become more
obvious, partly because the number of decisions (degree of
customer nodes) has been controlled by the alternating k-starts.

The coefficients of Model 3 are largely consistent with those
in Model 2, except that the previously insignificant income
becomes significant. The significant positive peer influence
indicates that a customer is likely to become “irrational” in

decision making and simply considers what his/her peer has
considered. Modeling the peer influence is a unique contribution
of our work as such effect cannot be modeled both theoretically
and computationally without the MCPN framework.

By comparing the above three models, several interesting
findings can be summarized about the preference modeling in a
multilevel network context, First, including the attribute-relation
effects alone (Model 1) can explain a large part of the formation
of preference links. This observation is consistent to the
foundational theory of many attribute-based preference
modeling approach, such as DCA. Second, a model with only
attribute-relation effects but no other relevant structural effects
may ignore some of the underlying social structures represented
by the structural patterns; therefore, such a model may produce
biased results even if a researcher is only interested in a subset
of product/customer attributes. Finally, the peer influence effect
(Model 3) introduces another layer of dependencies between two
customers into the structure of the network. The significant
positive estimate reflects the importance of social influence in
explaining customer behavior and modeling product demand.
Overall, the results of this example suggest that the nodal
attributes (customer and product attributes) and network
structures (product associations, social influences, and other
underlying effects) are both indispensable elements and play
together in shaping the decision behaviors of customers.

Table 4: Comparison of three specifications of ERGMs.

Model 1 Model 2 Model 3
Effects Est. CoefTl | (Std. Err) | Est. Coeff | (Std. Err) | Est. Coeff | (Std. Err)
Pure Structure Effect
Density -7.0138 | (0.399) | -3.0057 [ (0.659) | -2.8950 [ (0.656)
Alternating k-stars for products 0.8549 (0.221) 0.8818 (0.222)
Alternating k-stars for customers -4.5553 (0.463) -4.5640 (0.446)
Attribute-Relation Main Effect
Price paid to the dealer (in 100K RMB) -0.0333 (0.019) -0.0139 (0.019) -0.0103 (0.018)
Turbocharger dummy 1.2776 (0.110) 0.9124 (0.129) 0.7976 (0.118)
Engine capacity (in cc) 0.2724 (0.135) 0.0767 (0.127) 0.0378 (0.123)
Fuel consumption (in L/100km) 0.1578 (0.039) 0.1147 (0.036) 0.0993 (0.032)
First-time buyer dummy -0.2274 (0.096) -1.0463 (0.222) -1.0295 (0.224)
Monthly household income (in 100K RMB) | 0.0027 (0.002) 0.7085 (0.373) 1.0002 (0.386)
Cross — Level Effect
Association based closure 0.9287 (0.156) 0.9397 (0.127)
Peer influence 0.2746 (0.016)
Bolded coefficients are different from null at the 95% confidence interval.
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5. DISCUSSION AND CONCLUSION
While Discrete Choice Analysis (DCA) has been widely

used to predict the influence of design decision on customer

preference and firm profit, in this paper, we introduce a new
network approach that enhances traditional DCA models for
analyzing customer-product relations in supporting engineering
design decisions. We demonstrated the progression of a simple

unimodal network that contains only product associations, to a

multidimensional network that considers product associations

together with customer preference decisions, and finally to a

more complete multidimensional structure that integrates

product associations, customer social influence, and preference
decisions as one network entity.

The descriptive network analysis as presented in the
unimodal network example offers a convenient tool to
summarize key facts about the customer preference data.
Through descriptive network measures, nodes can be clustered
into subsets (community) or organized in ranks (centrality,
hierarchy) to reflect structural positions in a network. When
complex product association relationships are converted into
market segments and competitive rankings, designers can better
monitor product positions within a brand or between brand
competitors. The inferential network analysis with ERGM as
illustrated in MCPN configuration enables the detailed modeling
of both the network structures and customer/product attributes in
a rigorous statistical sense. Conceptually, the advantages of the
ERGM for multidimensional network analysis (MNA) over
traditional logit models for modeling customer preferences can
be summarized as follows:

—  Product associations can be modeled explicitly. In ERGM,
product alternatives are no longer mutually exclusive, but
interdependent in a network structure to influence
customer’s preference decisions.

- Evaluation of social influence is enabled. By constructing
customer social links in the customer layer, ERGM allows
the social network effect to be statistically assessed and
compared with other factors within a single model.

- Nested decisions can be analyzed through structural
modeling. The model estimates can uncover not only a
customer’s taste for a particular product, but also the
relationship between several preference decisions as well as
the number of decisions made, as represented by the
correlated structural effects.

- Correlated product/customer attributes are possible. Since
ERGM assumes the observed network as a single realization
from a multivariate distribution, no I.I.D assumptions are
necessary over the explanatory wvariables. Correlated
product/customer attributes can be entered as structural
terms and evaluated simultaneously.

- Coefficient estimates are highly interpretable and the
ERGM results can be easily integrated into an engineering
design optimization problem. The model estimates in
ERGM resemble closely the outputs of DCA, enabling the
assessment of various product configurations and their
impacts on customer preferences.

Beyond the preference modeling, the approach of network
analysis provides plentiful opportunities in engineering design
research. The use of network analysis implicitly carries
assumptions about dependencies in data. Depending on the
purpose of the analysis, the size of a network model can vary
from a few nodes to hundreds or thousands of nodes containing
a diverse set of products. Nevertheless, the network analysis
results could be sensitive to the issue of missing data and
influenced by how links are defined [39]. Another limitation for
ERGM is the degeneracy problem in model estimation [38]. This
may occur when a model fits the data poorly and cause the
Markov chain to move towards an extreme graph of all or no
edges.

MNA is not immune from practical issues when
implemented to preference analysis in the context of product
design. As this paper is focused on developing the conceptual
framework of the proposed approach, the case study needs to be
enriched by introducing more structural effects, and the
developed ERGMs will be assessed by computing a simulation-
based goodness-of-fit metric. In addition, the current MCPN
application will be extended to incorporate other types of
relations, e.g., directed association links for products and
purchase preference links for customers. To calibrate and
validate the simulated social network, we will conduct a small
scale empirical study to assess relevant structures of customer
social influences in this context. The benefits of MNA will be
validated by comparing results to those from DCA, including
relative quality measures on model fit (e.g. BIC) and predictive
accuracy on the hold-out sample (e.g. hit rate).

While this paper focuses on modeling customer-product
relations, the long-term goal of our research is to predict
customer preference decisions as functions of product and
customer attributes using network modeling. Such preference
models will be integrated into the design optimization
framework to support engineering decision making as what have
been presented previously in literature.
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