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Abstract

This paper articulates the logic of computational organizational modeling as a strategy for theory construction
and testing in the field of organizational communication networks. The paper introduces, Blanche, an object-
oriented simulation environment that supports quantitative modeling and analysis of the evolution of organizational
networks. Blanche relies on the conceptual primitives of attributes that describe network nodes and links that
connect these nodes. Difference equations are used to model the dynamic properties of the network as it changes
over time. This paper describes the design of Blanche and how it supports both the process of theory construction,
model building and analysis of results. The paper concludes with an empirical example, to test the predictions of
anetwork-based social influence model for the adoption of a new communication technology in the workplace.
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1. Introduction

Computational simulation of organizational structures and activities has been proposed as
a viable component in the process of theory construction, specification, and articulation in
the social sciences in general (Hanneman 1988), and more specifically in organizational
sciences (Carley and Prietula 1994; Morecroft and Sterman 1994; Senge 1990). In the
past two decades, several theorists have conceptualized organizations from a networks
perspective (e.g., Burt 1982; Rogers and Kincaid 1981; Stohl 1995). In an overview of
the field of computation and mathematical organizational theory, Carley (1995) identifies
network models as an important framework for theory development. In this paper we
argue that there continues to be a loosely coupled relationship between the articulation
of theoretical network mechanisms, model-building, simulation, and hypothesis testing.
Four important barriers identified in this paper are (i) a lack of emphasis by organizational
network researches to categorize the wide variety of theoretical mechanisms that explain
organizational behavior (ii) the lack of a general methodology to incorporate simulationsinto
the traditional realm of deducing and testing hypothesis, (iii) the need for model-building
and simulation tools that are easily accessible and understood by organizational researchers
who are not proficient in object oriented programming, and (iv) the limited effort to combine

simulation scenarios with observed empirical data from organizations. This paper addresses
these four barriers. First, we articulate a methodology that incorporates computational
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organizational modeling within the framework of traditional hypothesis testing. Second,
we present a computational tool, Blanche, that offers researchers who lack programming
expertise the ability to articulate theoretical derived computation models of organizational
phenomena. Finally, we present an example that uses Blanche to make predictions about the
adoption of a communication technology based on empirical data collected from a public
works department.

2. Theoretical Network Mechanisms

Network researchers have sought to explain organizational behavior in terms of formal
organizational structures as well as informal organizational structures such as commu-
nication networks, influence networks, advice networks and task networks (Monge and
Eisenberg 1987). More recently, there has been a growing interest in examining the un-
derlying logics (Kontopoulos 1993), or generative mechanisms, that explain the manner
in which networks enable and constrain organizational and inter-organizational behav-
ior. Monge and Contractor (in press) identify eleven generative mechanisms. These in-
clude: (1) exchange and dependency theories (social exchange and resource dependency),
(2) contagion theories (social information processing, social learning theory, institutional
theory, structural theory of action), (3) cognitive theories (semantic networks, cognitive
social structures), (4) consistency theories (balance theory, theory of cognitive dissonance),
(5)theories of homophily (social comparison theory, social identity theory), (6) theories
of social capital (theory of structural holes, strength of weak ties theory), (7) theories of
proximity (physical and electronic proximity), (8) uncertainty reduction theories, (9) so-
cial support theories, (10) collective action theories, and (11) theories of network and
organizational forms (contingency theory, transaction cost theory, and theories of network
organizations).

Monge and Contractor (in press) note that there are at least two implications of reviewing
the extant literature on organizational networks in terms of the underlying generative mech-
anisms. First, most network studies in organizations typically hypothesize and examine
organizational behavior only in terms of one of these generative mechanisms. For instance,
network explanations for employeejob satisfaction have been based on a contagion mecha-
nism (Hartman and Johnson 1989) or a balance mechanism (Kilduff and Krackhardt 1993).
Often the predictions based on these two mechanisms are contradictory and not easy to
parse out empirically. Second, based on their review, Monge and Contractor (in press) note
that the preponderance of research on organizational networks has been inspired by four of
the eleven theories reviewed: exchange theories, contagion theories, cognitive theories, and
theories of homophily. The few studies based on one of the other seven theories provide
ample evidence of their potential explanatory power, and should be actively considered by
network researchers. A system to make the simulation of various organizational hypothesis
easier would help alleviate the problem by allowing more generative mechanisms to be
tested together or against each other, and therefore to help clarify the differences in pre-
dictions based these models. The next section describes how computational organizational
models offer researchers the ability to articulate and construe the implications of multiple
theoretical network mechanisms.
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3. Computational Organizational Models

An explicit focus on the generative mechanisms whereby networks enable and constrain
organizational behavior has led to an interest in creating formal mathematical and compu-
tational models of organizational activities. It has, in effect, led scholars to combine two
streams of research, that is conducting organizational simulation based on generative mech-
anisms, and testing of network theories in organizational contexts (Carley 1995). There are
a few promising examples of this integration. Zeggelink (1993) models the evolution of
friendship networks based on a set of generative mechanisms derived from social exchange
theory (Blau 1964), classical conditioning theory (Lott and Lott 1960), social compari-
son theory (Festinger 1954), and balance theory (Heider 1958). Leavitt et al. (1994)
developed the Virtual Design team (VDT), a computational model of a multidisciplinary
engineering design organization based on information processing theory (Galbraith 1977),
contingency theory (Thompson 1967), media richness, and social influence theories (Fulk
and Steinfield 1990). Lin and Carley (1995) present a computational model for examin-
ing organizational performance that draws upon various factors articulated by contingency
theories (Scott 1987; Thompson 1967), including task environment, organizational design,
and stressors such as crises and time pressures. Corman (1996) offers a cellular automata
model, POWERPLAY, to demonstrate the emergence of a dominance hierarchy based on
principles inspired by structuration theory (Giddens 1984). Contractor and Grant (1996)
describe a computational model to examine the emergence of shared interpretations in or-
ganizations based on Burt’s (1982) structural theory of action and Heider’s (1958) balance
theory. All of these studies represent a genre of scholarship that attempt to model explic-
itly and dynamically the attributes and relationships among a network of agents based on
generative mechanisms suggested by one or more social scientific theories. Further, they
employ computer simulations to help envision the dynamic implications of their models.
The following section describes the traditional use of simulations as well as the adaptation
of this approach towards theory construction and testing.

4. Previous and Current Work in Organizational Simulation

Computer simulations have long been used as an effective tool in engineering. Engineers
typically use simulations to predict performance of a system that has known dynamic char-
acteristics. These characteristics are typically obtained from theory and are then articulated
in the simulation as difference or differential equations. The goal of engineering simulation
is then to assess the dynamic performance of a system based on a priori knowledge of the
dynamic relationships among the various elements of the system.

Forrester (1961,1973) was one of the earliest and most influential advocates of simulation
modeling of dynamic social systems. Forrester advocated the use of this approach to model
and assess the dynamics of industrial and world phenomena. While this approach has
produced a considerable number of studies, it is based on the assumption that the researcher
has a priori knowledge of the dynamic relationships among elements of the system. Indeed,
many of the results of these models have been criticized for specifying relationships that

were at best untested, and at worst flawed. In response to these criticisms, there has been a
more recent interest in redefining the utility of simulationsin the social sciences. Rather than
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using simulations to test the long term dynamics of systems with known inter-relationships,
theorists (Carley and Prictula 1994; Contractor 1994; Hanneman 1988) have suggested that
simulations can be used to help with social scientific theory construction,

Carley and Prietula (1994) suggest the emergence of a new field, Computational Organi-
zational Theory (COT), to signal the growing interest in the construction of compulational
models to augment theory building. Most social science theories are richly evocative but
highly abbreviated (Poole 1990). That is, they offer explanations that suggest complex
inter-relationships, yet the non-mathematical statements of the theory often do not lend
themselves to unambiguous and specific descriptions of these relationships. Computer sim-
ulations, which require completely unambiguous specifications of the inter-relationships,
offer theorists the opportunity to articulate their models with greater precision and rigor,
Realistically, this implies that the same theory may lend itsell to several alternate mod-
els depending upon the interpretation of the theoretical statements. Computer simulations
offer the researcher an opporlunily Lo assess the long term implications of these different
interpretations of the theory. Hanneman {1988) advocates the use of compuler simulations
Lo gain insights into the long-term implications of a dynamic model. Tt is important Lo
emphasizc that the results of a computer simulation are not a surrogate for empirical data.
Rather, they indicate the emergent processes implied by the theory. As such, simulation
data provide the researcher with an opportunity to deduce hypotheses (that are implicit but
not immediately obvious) about differences in the emergent process implied by theories.

Traditional approaches rely on verbal and implicil strategies to articulate hypothescs
from the theoretical statement. COT offers the ability to formalize and make explicit the
deduction of hypotheses from the theoretical statement. The distinetions between traditional
and proposed COT research process are summarized in figure 1 below. Tn the traditional
deductive approach to theory construction, rescarchers deduce hypotheses by examining the
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Frgure I, Traditional vs. COT research process
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logical inter-relationships among the verbal statements offered by the theory. These verbally
deduced hypotheses are then empirically validated. Empirical rejection of the hypotheses,
lzad to refinements in the theory. TIn the proposed computational organizational theory-
construction (COT) approach, researchers identily the logics of emergence in the theory,
and articulate these logics in a computational model. Given the frequent verbal ambiguities
in theoretical statements, the process of identifying the logics is non-trivial. However, the
cxercise 15 an important and useful step in adding precision and rigor to the articulation
of the theory. Since these logics are potentially non-lincar, il is virtwally impossible o
mentally construe their implications over time and/or for a large number of entities (e.g.,
individuals, groups. organizations). Hence simulations of the computational model are
used to deduce the potentially non-linear, transient and long-term dynamics implied by the
logics of emergence for one or more entities. The results of the simulation are then fitted
to empirical data. A good fit would imply validation of the theory, while a poor fit would
suggest refinements, modifications, or rejection of the theory. A tool to create and simulate
COT models is particularly uselul in implementing the theory construction outlined above.
Blanche is such a tool. The following section describes the modeling concepts used in the
design of Blanche.

5. Modeling Concepts in Blanche

In whalever sensc a nelwork is modeled, core issues are the articulation of the characteris-
tics of the nodes (or actors) in the network, the interrelationships among the nodes, and the
evolution of the atiributes and interrelationships over time. Blanche is a computational tool
o assist in the modeling and execution of computational simulation based on a network
conceptualization of organizations. Unlike generic simulation programs such as STELLA
(Richmond and Peterson 1990) and MicroSAINT (Micro Analysis 1990), Blanche is an
ohject-oriented program that was designed and built to specifically support computational
simulation of organizational networks, As such, it provides a lexible and reusable frame-
work [or the specification of models and the analysis of results from simulations.,

A minimalist framework [or computationally modeling network systems is objects or
entities (actors, people, nodes) characterized by some collection of auribuies and related
by links (see Rock-Evans 1989). In addition, a set of generative mechanisms (the logics of
emergence) is needed to examine the evolution of networks. A discrete set of gencrative
mechanisms provides flexibility and expressiveness such that dependencies among attributes
and links over time are modeled as a funcuon of values at previous time steps (e.g., attnbule
A at time r 15 a [unction of the valve of A at time 7 — 1 and some links® (L"s) values at f — 1).
With the assumption that the values of attributes and links take on real (floating point) valucs,
we propose nonlingar difference equations as a natural and efficient computational approach
Lo representing the evolution of attribute and link values over time. These distinctions are
more fully described below.

3.1. Artributes

An attribute is simply some measure of any property of a node, If we consider the node
as a person, that person can have as many aunbutes as necessary for the model, where
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each attribute is represented by a floating point number on an arbitrary scale. Examples
of attributes could be a person’s expertise, an opinion, an attitude, or workload. State
information, such as whether or not a person is engaged in a certain activity, can also be
modeled as an attribute.

Altributes can depend on each other. For example, a workload attribute of one person
could depend on an atiribute that describes the efficiency of the same or other persons. Note
that attributes can thus be related to attributes not only of the same node (such as person)
but those of other nodes as well, Altributes can also change over time. Time intervals
are considered discrete, divided into iterations that could be thought of as scconds, days,
or any other consistent length of time. At each new iteration of the simulation, time is
incremented, and the attribute’s values change. How the attributes change is calculated by
its defining nonlincar difference equation.

5.2. Links

A link specifies a one-way (directed) channel of variable sirength. Links may represent
communication, influence, workflow, activation, or any other relationship of interest be-
lween two nodes in the network. Strength can be interpreted in a variety of ways. Lor
example, in a communication network, a link from node A to B can represent the volume
of communication (say, number of messages) that A reccives from B. The link strength
is either dichotomous (0 or 1) signifying presence or absence, or continuous. Typically, a
higher strength value indicates a stronger linkage. These link values may change depending
on the attributes (of the source, destination, or both) as well as other links. For every link
variable specified, there will be a2 — n actual links in the simulation, where n is the number
ol people in the simulation,

Thus, a model in this framework consists of a list of persons or nodes, cach charactenzed
by a set of real-valued attributes; a list of real-valued links relating persons to each other;
initial conditions for the values of atiributes and links at ime 1 = 0; and nonlinear difference
equations that model how the attributes and links change over time. In the following scelion,
we articulate a theoretically derived computational organizational model of the adoption of
a communication technology in an organization.

6. Modeling the Adoption of A Communication Technology: An Example

The following example is drawn from an ongoing research project examining the infor-
mation infrastructure at a city’s public works department (Jones et al. 1994, 1995). One
of the goals of the research project is Lo examine changes in the work practices following
the introduction of CityScape, a communication and collaboration tool. In order Lo as-
sess existing work practices longitudinal data has been collected over a 18 month period.
The data gathered is being used to inform the introduction and deployment of CityScape.
Specifically, a computational organizational model, derived from theory. is being used to
predict the extent and speed of adoption of CityScape amongst members of the public works
department. In this section we describe a proposed computational organizational model in
terms of members” attributes and relationships.
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Figure 2, Concepioal computational network model for adopsion of rechnology,

The cutcome variable in this model is an individual's usage of the technology. Figurce 2
presents the theoretical relationships that serve as antecedents for this outcome variable,
The outcome attribule variable for each individual is designated as *“Tech Usage” in ligurc 2.

Our model is derived from Salancik and PlelTer’s (1978) Social Information Processing
Theory as well as [rom a more recent extension to this theory in the domain of lechnologics,
the Social Influence Model of technology use (Fulk, Schmitz and Steinfield 1990). Both
of these theories suggest that individuals® attitudes toward a new technology are based on
their prior attitudes (indicated as “Attitudes™ in ligure 2), as well as the attitudes of individ-
uals with whom they communicate (indicated as “Nelworks” in figure 2), Recent rescarch
(e.g., Burkhardt 1994) extending social information processing perspectives, suggest that
the extent to which an individual is influenced by the “Network™ as opposed to their prior
“Attitudes™ is in part determined by the individual’s disposition towards self-monitoring
(indicated as “Individual Disposition™ in ligure 2). That is, individuals who are high
self-monitors are more likely to be influenced by the *“Network” than those who arc low
self-monitors.

In general terms, the theories described above, are based on a contagion network mech-
anism [or the adoption and vsage of a technology. That is, an individual is more likely to
adopt and vse a technology if s/he communicates with others who either use the technology
or have a positive attitude towards the technology. However, as Contractor and Eisenberg
(1990) note, the adoption of a communication technology triggers a recursive relationship
between individuals® attributes and their networks. The adoption of a technology, provides
the individual with a potential change in their communication network. This in turn pro-
vides them with a different set of social influences which may modify their attitudes toward

the technology, which in turn may change their use of the technology. Further, ongoing
use of the technology by an individual will influence their technical expertise (indicated as
“Expertise”™ in figure 2) in using the technology. This increased cxpertise will make these
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individuals more likely to be called on for technical advice by others in their communica-
tion network who are novice or non-users of the technology. The recursive nature of the
evolving relationships between individuals® attitudes towards the technology, their levels
of expertise, and their advice and communication networks is difficult to construe mentally
and is best specified as a set of generative mechanisms.

In summary, the model described above draws upon a contagion network mechanism to
describe the adoption of a technology. It is based more specifically on Social Information
Processing Theory and its extensions. Further, drawing upon the arguments proposed hy
Contractor and Eisenberg (1990), the model is reformulated in a dynamic context Lo arlicu-
late the recursive relationship between individuals® attitudes, expertise and their networks.
The generative mechanisms specifying the relationships among the variables in the muodel
was implemented in Blanche. The following sections describe this process.

6.0,  Cverview of Blanche

Once a compulational model is defined there are many ways to implement it. Using a
general-purpose computer language to hard-code a particular model may be efficicnt in the
short term but does nol promote reusability or extensibility. There are simulators in which a
user can build these models (such as STELLA), but since they are not designed specifically
for network modeling, they can be unwicldy, especially for networks of different sizes and
for batch processing of many randomly-generated data sets, Since the models described
above have a common framework, an altractive solution is to create a generic, reusable
architecture to support the framework and provide the end user with casy-lo-use tools Lo
define models (in terms of atiributes, links, and cquations). Blanche is such a system and is
designed to be used by network rescarchers as a tool for building and evaluating quantitative
organizational simulations. It is implemented in Microsaft Visueal C++ and runs on Windows
95 and Windows NT. Blanche embodies an object-oriented framework in which a network
is defined as a collection of Node objects which each have internal attributes and links to
other Nodes, Both attribute and links are objects themselves.

6.2. [Implemeniation of Computational Organizational Model: Blanche ModelBuilder

Blanche consists of two modules, a part to create a model (ModelBuilder) and a part to
run the model (ModelAnalyzer). In ModelBuilder, the user specifies information about the
altributes and links; names, equations, file for initial data, and the level (or hierarchy) of
the attributes and links, Figure 3 shows the main screen of ModelBuilder, while editing
our example model. The user creates the model of a single person or node, which will then
be used as the model for all persons or nodes in the network. Although in our conceptual
framework, it is possible 1o have heterogeneous nodes in the network (i.c., nodes that have
different attributes or use different equations), currently in Blanche the representation of
nodes is homogencous. It is possible, however, to model helerogeneous networks by using
attributes for classification and if-then statements based upon thosc autributes. The lack
of heterogencous nodes in this model implies that individuals all have the same attribule
variables. Tt does not imply that they have the same values for these attributes, For instance,
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Figure 3. Blanche ModelBuilder imerface.

in the example being considered here, all individuals were expected to have an attitude
towards technology, however their specific attitudes were not assumed to be the same.

To create a variahle, the user fills out the dialog box shown in figure 4. This particular
one is [or variable UT. In this dialog box, all the information needed to define an attribule is
filled out: the name, the level of the variable, whether the variable is a link, the equation, the
data file, and any comments or description. Currently in Blanche, equations must be typed
out in text, with standard logical and mathematical operators selectable from the Functions
list.

For the model described in the example above, the following nine variables, and two
temporary variables, were specified in ModelBuilder: Use of the CityScape Technol-
ogy (UT); Time vsing CityScape Technology (TUT); General Autitudes towards Tech-
nology (GAT); Specilic Altitudes towards the CityScape Technology (SAT and SAT2); Self
Monitoring (SM); Task Expertise (TE); Stochasticized Communication Network (SCNJ:
Non-stochasticized Communication Network (NCN and NCN2); and Technology Advice
Network (TAN). For cach of the nine variables, a difference equation was used to describe
the dynamic influences on the variable. These nine equations are described below.

‘The key outcome variable of this computational model was an individual i’s Use of
the Technology (UT) at time, r. This variable is a dichotomous variable (1=Uscd,
)= Not used). Tt is computed as a non-linear hysteresis function of the individual’s level
of satisfaction. Thal is, in order to start using CityScape, an individual's specific attitude
towards the technology (SAT) must be 0.66, on a scale of 0 (low) to 1 (high). However,
1o stop using the technology, the individual’s specific attitude towards the technology must
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Figure 4. Specifying atributes and links in Blanche’s ModelBuilder.
oT
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Figure 5. Hysteresis function relating specific attitode towards a technology (SAT) and the use of the fechnology
(UT).

fall below 0.33. This relationship is described in Eq. (1) and depicted in figure 5. Since
the technology being introduced was new, each individual starts out with a UT value equal
to (), except for those who were first assigned o use the technology.
0 ifSAT; , = (3 -1iuT, )
ur, = : Gy (1)
1 i[SAT, , = (%—1UT;,)

Time Using Technology (TUT) represents a cumulative measure of the amount of time an
individual has used CityScape. Since the technology is newly introduced, each individual
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starts with ). This measure is therefore a direct function of their Use of the Technology
(UT). Hence Eq. (2) describes individual is Time Using Technology at time, 1 — 1. thus:

TUT,, = TUT;,_, +f UT;, =0, 2)
TUT;, ,+1 ifUT; = 1.

An individual i's Specilic Auitude towards the Technology (SAT) is specified as a con-
tagion function. That is, it depends on their General Attitudes towards Technology (GAT),
their previous Specific Allitudes towards the Technology (SAT), as well as the Specilic
Adtitudes towards Technology of others in their Technical Advice Network (TAN). The ex-
tent to which they are influenced by others in their network is moderated by their disposition
to be Self Monitoning (SM). If the individual has no one in their technical advice network
and if the individual is vsing the technology (UT = I}, then the s/he is assumed to have
good or bad experiences hased solely on their general attitude toward technology (GAT),
with the level of effect the GAT decreasing over the Time the user is Using the Technology
{(TUT). The value that is calculated must be above one. The variable SA12 is the bounded
value that must be used by other equations. The equation for an individual i's Specific
attitude towards the Technology at time ¢ is given by Eqg. (3), and the bounding of the value
is accomplished in Eq. (4):

SAT, , + UT;_, (NRAND(0, 0.05) + (GAT; — 0.5) - 7155). if 37 TAN;; , =0,

2 TUT1
N ¥
SAT, = {(1 — SM)SAT,, , + SM, D T ST,
L TAN, E
+UT;,_, (NRAND(0, 0.05) + (GAT; — 0.5) - 72&)  if 3L TAN;,_, =0,
(3)
_ [SAT,, ifSAT, <1

o= [ I, ifSAT, = | @)

An individual's Technological Expertise (TE) in using CityScape was specified as a non-
linear function of the Time Using the Technology (TUT). In essence, it suggests that there
is a learning curve associated with the use of the technology. This equation is described in
Eq. (5) and depicted in figure 6.

J[TUT,_
g 2o 0Ty 5
I, = (5)

Individual i’s General Attitudes towards Technology (GAT) and disposition towards
self-monitoring (SM) at time ¢ were considered as trait variables that are stable. Hence, as
indicated in Eqs. (6) and (7), the variables remain unchanged over lime:

GAT, = GAT;, | (6)
SM, = SM, (7)

There are four relational variables in the computational organizational model, although
two of the four are “correctional” variables. The first three index task communication
among the individuals, and the fowrth describes the technical advice network among the
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Figure6. Learning curve function relating technological expertise (TE)and the time using the technology (TUT).

individuals. Calculating the task communication is a multi-step procedure and for each of
those steps there is a differentequation. First, in Eq. (8), NCN is calculated. NCN describes
how a pair of individuals are likely to increase their task communication if they are both
using the new technology (UT). There are also random factors represented in this equation.
The value obtained in Eqg. (8) must be positive, which is ensured in Eq. (9) and assigned to
NCN2. This value is then row-normalized in Eq. (10) and is assigned to SCN, which is the
variable used by other equations. This final result to the three-step computation represents
the proportion of time spent talking to another person.

SCN;;,_, TN (,0.1) ifUT;,_, TUT;, #2,
NCN,'j, = + + 1 - + _ (8)
SCNy,, tN©0)t L ifuT,, tUT;, =2
NCN;;,, ifNCN;; > 0
o= i ! 9
NCN2;; lU: FNCNy, <0 ©
NCN; . N .
SCN _ W_ﬂ__zj=l NCN,‘jr lf Z}=] NCN.EJ, > 0: (10}
U 0 if Z?r=| hICI\IUI =0

Finally, the Technological Advice Network (TAN) describes the network of individuals
that aperson would go to for advice about adopting the new technology. In order for an Indi-
vidual i to seek technological advice from Individual j , the former must have considerably
lower task expertise (TE) than Individual j , and Individual i must spend at least a modest
proportion of time communicating (SCN) with Individual j . This is described in Eq. (11):

0 if (TE;_, —T}:“‘..-,_,)SCI\I,-Jf,_l < I/N, (11)

TAN;; =
i [ 1 if (TEj.«_l —_ '1"]5'4}_])SC[\I,'J.}_i = lfN

This section has described the implementation of the attribute variables, the relational vari-
ables, and the generative mechanisms in the ModelBuilder, a module of Blanche. The next
section describes the execution of the computational organizational model in ModelAna-
Iyzer, a second module in Blanche.
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6.3. Execution of Computation Organizational Model: Blanche ModelAnalyzer

ModelAnalyzer runs the model that has been specified by the ModelBuilder program. To
run the model, the user specifies the number of nodes (persons, in our example) in the
model, the data set(s) that represent initial conditions of the simulation, desired statistics,
and the duration of the simulation (specified as the number of iterations or time-steps).

Simulation results output from ModelAnalyzer are expressed both statistically and graph-
ically. ModelAnalyzer calculates a variety of standard measures such as attribute means and
standard deviations, as well as network metrics such as indegrees, outdegrees, closeness,
and betweenness. All the results can be viewed via plots and graphs within the program.
Data and statistics from the simulation can be saved into an ASCII file that can be im-
ported into various statistical programs for further analysis. In addition, all network data in
ModelAnalyzer can be directly saved in aformat that is readable by KrackPlot (Krackhardt,
Blythe and McGrath 1994), a network visualization and plotting program.

For the example at hand, ModelBuilder was used to specify a computational organiza-
tional model of the use of a new technology, CityScape, by members of the Public Works
Department. The goal of this research was to identify the deployment and usage patterns
that would be theoretically predicted based on the network contagion mechanisms described
earlier in this paper. The model described above was “populated” using data gathered from
the Public Works Department (N =57) for a city in the south-eastern U.S. In particular,
attribute data were gathered on individuals’ general attitudes towards technologies and their
individual disposition towards self-monitoring (Lennox and Wolfe 1984). Relational data
were gathered on individuals’ task communication networks and their technical advice net-
works. These data served as initial conditions for the computational organizational model.
Since the model was being used to examine the introduction of CityScape, a new technol-
ogy, individuals’ initial technology expertise and technology usage were specified to be
zero. Their specific attitudes towards the CityScape technology were specified to be neutral
(0.50n ascale of O to 1).

In order to determine the most effective and speedy deployment of CityScape in the Public
Works Department, various simulations were executed based on the initial data collected
from the organizational members. These simulations were varied on the basis of which
individuals were targeted as initial users of the technology. Due to finite training resources,
the goal was to identify whether an organizationally broad or focused installment was most
likely to help diffuse the adoption of CityScape throughout the organization. Specifically,
the question was whether it is better to give the technology to four department heads, or to
four people all in one department. Figures 7 below shows the results based on two scenarios.
In each of the two scenarios, four individuals were identified as the firstusers of CityScape.
Each of these individuals were assigned a value of 1 for the variable Use of Technology.
As mentioned earlier, since a new technology was being introduced into the workplace,
the remaining members of the organization were assigned a zero for the variable Use of
Technology (UT). The simulations in the two scenarios were run over 50 iterations.

In the first scenario, the four division heads targeted for use of CityScape were the

heads of Engineering and Planning Services, Business Management, Environment and
Resource Management, and Installation Housing. The four members of the same division
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Technology Usage over Time
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Figure 7. Differences in technology usage under two different scenarios.

(Engineering and Planning Services) targeted in the second scenario were the Group Leader
of the General Engineering, the Real Property specialist, a CAD Technician, and an Elec-
trical Engineering Technician.

Asisevident from figure 7, the speed and level of deployment varies significantly between
the two scenarios, with the more focused deployment (Scenario Two) resulting in faster and
much more complete adoption of the technology. Given the non-linear dynamics proposed
in the computational organizational model it is impossible to have a priori predicted these
differences in deployment patterns. This modeling provides us with hypotheses about
the pattern and level of adoption when the technology is actually deployed. Ongoing
data collection following the deployment of CityScape will provide us an opportunity to
empirically validate the deployment pattern predicted by the selected scenario.

7. Uses and Future Extensions for Computation Organizational Network Modeling

This paper has argued for the intellectual integration of two vibrant research traditions—
computation organizational modeling and organizational communication network research.
We identified four barriers that must be overcome in order to leverage the benefits of these
two traditions. Following an overview of the network mechanisms used to explain organi-
zational behavior, and the logic of computational organization modeling and simulation, we
introduced Blanche as atool that provides a generic framework for modeling networks and
their evolution over time. The researcher specifies nodes in terms of real-valued attribute
and link variables. The dynamic interrelationships between nodes, expressed in terms of
attributes and links, are modeled as nonlinear difference equations. In this paper we have
illustrated how the adoption and use of a new technology can be modeled in this framework.
As evidenced by the example, computational organizational network modeling, and tools
such as Blanche offer considerable potential for theory development and testing.
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