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ABSTRACT
Today’s most pressing scientific problems necessitate scientific teamwork;
the increasing complexity and specialization of knowledge render “lone
geniuses” ill-equipped to make high-impact scientific breakthroughs.
Social network research has begun to explore the factors that promote
the assembly of scientific teams. However, this work has been limited by
network approaches centered conceptually and analytically on “nodes as
people,” or “nodes as teams.” In this article, we develop a “team-interlock
ecosystem” conceptualization of collaborative environments within which
new scientific teams, or other creative team-based enterprises, assemble.
Team interlock ecosystems comprise teams linked to one another through
overlapping memberships and/or overlapping knowledge domains. They
depict teams, people, and knowledge sets as nodes, and thus, present both
conceptual advantages as well as methodological challenges. Conceptually,
team interlock ecosystems invite novel questions about how the structural
characteristics of embedding ecosystems serve as the primordial soup from
which new teams assemble. Methodologically, however, studying ecosys-
tems requires the use of more advanced analytics that correspond to the
inherently multilevel phenomenon of scientists nested within multiple
teams. To address these methodological challenges, we advance the use
of hypergraph methodologies combined with bibliometric data and simula-
tion-based approaches to test hypotheses related to the ecosystem drivers
of team assembly.

Introduction

The idea that high-impact scientific breakthroughs are the work of “lone geniuses” has long lost its
appeal. Narrative (e.g., Charney, 2003) as well quantitative accounts (Uzzi & Spiro, 2005) reveal that
today’s most pressing scientific problems—those within domains ranging from translational medi-
cine to environmental sustainability, from cyber learning to disaster response—present a degree of
complexity that necessitates scientific teamwork (Barabási, 2005; Wuchty, Jones, & Uzzi, 2007).

For the most part, studies of scientific teamwork have focused on the factors related to team
effectiveness occurring after a team has assembled (e.g., National Research Council, 2015). However,
studies of team functioning post-assembly miss important dynamics occurring prior to team
assembly that impinge on scientists’ decisions to join teams in the first place. Scientific organizations,
such as universities or research institutes, afford individuals substantial autonomy and flexibility on
forming or join new teams. Given that science is a human endeavor, scientists are susceptible to
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natural human social preferences (e.g., McPherson, Smith-Lovin, & Cook, 2001) and cognitive
limitations (e.g., De Solla Price, 1965; Dunbar, 1992) when making decisions related to team
assembly. These natural human proclivities often lead individuals to assemble into teams that are
suboptimal in their effectiveness. In fact, effectively assembling scientific teams can be a daunting
task, both logistically as well as technically, and many scientific teams suffer from the consequences
of suboptimal team assembly (Cummings & Kiesler, 2008).

To address these challenges, researchers have begun to investigate the mechanisms that promote
the assembly of new scientific teams. Research on scientific team assembly often relies on biblio-
metric approaches, which leverage publically available information on publication, co-authorship,
and/or citation activity. These approaches are used to understand how prior patterns of collaborative
activities influence future team assembly. For the most part, research investigating drivers of
scientific collaboration has depicted collaborations as ties between pairs of researchers (e.g.,
Cummings & Kiesler, 2007; Lungeanu, Huang, & Contractor, 2014). These “person-to-person”
approaches focus on the likelihood of a collaboration tie between a pair of researchers in a team.
Lost in these approaches, however, is the ability to distinguish a network of (1) three researchers
linked pairwise because all three collaborated on one publication from (2) three researchers linked
pairwise because pairs of them collaborated on three separate publications. Thus, the representation
used by current network approaches that model collaboration as dyads are unable to discriminate
between these two substantially different collaboration scenarios.

Scientists often work in teams including more than two individuals. Thus, representations of
collaboration should explicitly characterize multiple individuals in teams. Furthermore, most scien-
tists work on multiple teams, concurrently, and across time, as they engage with new and old
collaborators to address research problems requiring unique and overlapping knowledge domains.
Thus, representations of collaboration should explicitly characterize teams that overlap or “interlock”
with other teams based on common members (i.e., member interlocks) and/or common research
topics (i.e., knowledge interlocks). Poole and Contractor (2011) argue that, for the aforementioned
reasons, we should examine how scientific teams nucleate within complex multilevel ecosystems. The
structures of interlocking teams within scientific ecosystems are relevant to understanding team
assembly because social phenomena, such as social bonding, knowledge generation, and learning, are
team experiences that are likely to shape the assembly of future teams.

Research on scientific team assembly needs to move beyond a dyadic person-to-person framework
that characterizes collaboration as a collection of pairs of researchers and explore the ways in which
characteristics of the interlocking team structures, in which scientists are embedded, influence team
assembly. This article leverages an extension to graph theory, hypergraphs, to address methodological
limitations of current network approaches and better account for the nesting of individuals in teams and
the patterns of interlocks among teams.We begin by describing key aspects of scientific team ecosystems,
and operationalize these concepts using a hypergraph framework. Then, we provide exemplar hypoth-
eses suggesting that there are certain characteristics of scientific ecosystems that enhance the likelihood
that certain scientific teams will assemble. Finally, we demonstrate the combined use of hypergraph
methodologies with an advanced computational technique to test these hypotheses. The hypergraph
methodological approach enables researchers to operationalize the patterns of team interlock structures
characterizing scientific ecosystems. The computational technique, ecosystem simulations, tests ecosys-
tem-based hypotheses by comparing observed characteristics of scientific ecosystems with the ecosystem
characteristics from a distribution of randomly generated ecosystems.

Team interlock ecosystems

Research on scientific team assembly has significantly advanced our understanding of scientific
teamwork by demonstrating that there are certain fundamental human tendencies that give rise to
new teams. This research uncovered three categories of fundamental characteristics that predict
future collaboration between any given pair of scientists: individual attributes of the scientists, prior

2 A. LUNGEANU ET AL.



collaboration relations between them, and characteristics associated with the broader structure in
which the scientists’ dyad is embedded.

Collaboration dyads are more likely to form when scientists have complementary skills (Lee &
Bozeman, 2005), are geographically proximate (Cummings & Kiesler, 2007), and when both mem-
bers have longer tenure, are affiliated with lower tier institutions, or have lower H-index scores
(Lungeanu et al., 2014). Research also shows that prior collaboration reduces uncertainty about the
likelihood that the pair will engage in a future collaboration (Cummings & Kiesler, 2008; Gruenfeld,
Mannix, Williams, & Neale, 1996; Guimera, Uzzi, Spiro, & Amaral, 2005; Hinds, Carley, Krackhardt,
& Wholey, 2000; Lungeanu & Contractor, 2015; Lungeanu et al., 2014). Finally, the patterns of
relationships within the broader collaboration networks also affect the likelihood of collaboration
between pairs of scientists. For example, Newman (2001, p. 408) showed that “friend-of-a-friend”
mechanism (Heider, 1958) predicts future collaboration, with researchers having a “30% or greater
probability of collaborating if both have collaborated with a third scientist.”

Whereas prior work has built on the notion that collaboration occurs at the level of a dyad, in
reality, collaboration takes place within multilevel social structures, with individuals engaged in
multiple teams that each often have many more than two members (Bordons & Gómez, 2000). In
fact, evidence suggests 65–90% of knowledge workers are members of multiple teams at any given
time (O’Leary, Mortensen, & Woolley, 2011). Figure 1 provides an illustration of this “multiple team
membership” phenomenon. This figure depicts ten individual scientists (labeled m1–m10 in orange)
who are organized into six teams (labeled T1–T6 with lines indicating their boundary).

In Figure 1, let us assume two researchers (m5 and m6) have assembled into a newly formed team
(Team 1), with boundaries indicated by the dotted red line. The figure indicates that in addition to
Team 1, Member 5 also belongs to Team 2, and Member 6 belongs to both Teams 4 and 6. Thus,
Team 1 is directly interlocked with Teams 2, 4, and 6 based on common members (i.e., a member
interlock). In turn, the three teams in Team 1’s proximal ecosystem (i.e., the team’s with which it has
direct member interlocks) include additional members who belong to other teams, and so on. Thus,
as Figure 1 depicts, more distally, Team 1 is indirectly linked to Teams 3 and 5 through interlocks
with teams that are directly interlocked with Team 1. In scientific ecosystems organized into teams,

Figure 1. Sample representation of a scientific ecosystem characterized by interlocking teams. Note. The red dotted line represents
the external boundary of a newly assembled scientific team; the solid black lines represent the boundaries of other scientific teams
in the proximal and more distal surrounding ecosystem; A letter T represents a scientific team; A letter m represents a member of
one or more scientific team; A letter k represents the knowledge domain considered within a scientific team.
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knowledge “flows through network ties via the individuals that connect different teams by virtue of
co-memberships on teams” (Zaheer & Soda, 2009, p. 3). Thus, the structures of team interlocks
surrounding scientists are likely to be relevant to understanding the situations that give rise to new
teams.

Figure 1 also depicts the knowledge domains (e.g., topics, areas of inquiry) relevant to each team
(labeled k1–k9 in green), and the ways in which the teams are interlocked based on overlapping
knowledge. Within the context of Team 1, Members 5 and 6 pursue research related to Knowledge
Domains 6, 7, and 8. However, both scientists have also worked as members of teams that have
considered other knowledge domains. As a member of Team 2, Member 5 investigates Knowledge
Domains 3, 4, and 6. Thus, Team 1 is not only interlocked with Team 2 based on overlapping
membership, the teams are joined through a knowledge interlock based on the overlapping engagement
with Knowledge Domain 6. In fact, Member 5 might be bringing her prior experiences investigating
Knowledge Domain 6 to bear within the context of Team 1. In contrast to Member 5, the teams that
Member 6 has contributed to previously did not investigate any of the topics that are considered within
Team 1. However, this scientist has had experience working within other knowledge domains that
might be relevant to the topics of investigation within Team 1. Thus, the ways in which teams are
interlocked through knowledge are relevant to understanding team assembly.

A hypergraph approach to characterizing team interlock ecosystems

The team interlock view of scientific ecosystems, illustrated in Figure 1, depicts more accurately and
richly the embedded social and intellectual milieu within which scientific collaboration occurs.
However, the structure of team interlock ecosystems can be challenging to identify and describe.
In fact, one reason for the paucity of studies examining overlapping teams is that such ecosystem-
focused investigations entail multiple levels of analysis (e.g., individuals nested in multiple inter-
locking teams), which, in turn, requires the use of more complex statistical analyses and tools
(Lungeanu, Sullivan, Wilensky, & Contractor, 2015). Network researchers interested in collectives
have typically employed one of two analytic approaches to capture relational properties unfolding at
multiple levels (e.g., person-to-person; person-to-team) of social systems. The first is to capture
actor-to-actor relationships and represent their structure in a one-mode network; the second is to
capture the linkages of actors-to-collectives in a two-mode or bipartite network linking individuals to
teams. The former fails to represent the entitativity of the collective; put simply, three links between
three nodes could imply one entity (or team) of three researchers or three entities (or teams) of three
separate pairs of researchers. The latter, bimodal network approach, links individuals to collectives,
but fails to capture individuals’ relations with one another or other relations (e.g., overlap in
knowledge domains) among teams.

In our conceptualization of collaboration, scientific teamwork constitutes more than a collection of
dyadic person-to-person or person-to-team connections. Collaboration draws together a team of
authors, publishing articles involving multiple knowledge areas. This collaboration cannot be accurately
represented by projecting onto a one-mode network (researcher-to-researcher or person-to-person) or
a two-mode network (researcher-to-article or person-to-team). Instead, the collaboration is better
formalized as a hypergraph, in which authors, keywords, and/or journals are combined in (possibly
overlapping) sets (Shi, Foster, & Evans, 2015). Hypergraphs have been well established in the area of
mathematics, as an extension to graph theory, beginning with foundational work by Berge (1973). Just
as edges represent links between pairs of nodes within a network (or, what graph theorists call, a graph),
hyperedges represent “links” connecting multiple (not necessarily a pair of) nodes that represent a single
entity within a “hypergraph.” For instance, in the case of a publication, a single hyperedge connects all
of the authors on the team as well as all of the keywords for the article. A collection of hyperedges (with
possible overlaps) constitutes a hypergraph, or what we refer to as a team interlock ecosystem. Recently,
researchers have begun to recognize the value of hypergraphs as a means of representing and analyzing
more complex data about teams, with promising results (Ghasemian, Zamanifar, & Ghasem-Aghaee,
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2017; Ghasemian, Zamanifar, Ghasem-Aqaee, & Contractor, 2016; Sharma, Srivastava, & Chandra,
2014; Shi et al., 2015; Taramasco, Cointet, & Roth, 2010).

Key components of hypergraphs

Hypergraph approaches are beneficial for characterizing the structures of team-based enterprises like
scientific research. Here, we review key hypergraph components that can be used to characterize
team interlock ecosystem structures.

First, in the context of scientific collaboration, a hyperedge represents the boundary of a scientific
team such as those indicated by lines in Figure 1. Hyperedges are comprised of multiple nodes of one or
more “type.” For example, nodes could be researchers participating in a collaboration and the knowledge
domains associated with that collaboration). Nodes can have connections to other nodes (as in one-
mode person-to-person networks) as well as to hyperedges (as in bipartite person-to-team networks).

As a whole, a hypergraph constitutes a set of hyperedges which can be connected to one another
based on node overlaps (i.e., member or knowledge interlocks). For example, Figure 1 depicts a
hypergraph based on the publications involving members of a focal team. Mathematically, a
hypergraph is represented as H ¼ V;Eð Þ. V is a set of nodes (or vertices), V ¼ v1; v2; . . . ; vnf g,
that can be authors, keywords, methods, etc. E is a set of hyperedges, E ¼ e1; e2; . . . ; emf g, that
include as many or as few as zero nodes. This is an important departure from one-mode social
networks in which edges are required to have exactly two nodes.

The interlocks between hyperedges based on overlapping nodes constitute hyperties. A hypertie
indexes the set of nodes shared by two or more hyperedges, which can include any arbitrary number
of nodes in theory. Mathematically, we have: T ¼ e1 \ e2 \ . . . \ ei, for any i number of hyperedges
e1 through ei, where i � 2.

The local neighborhood L(e) of a hyperedge e is defined as L eð Þ ¼ h 2 E : 9v; s:t: v � e; hf gf g,
that is the set of all hyperedges h (i.e., other teams) such that there is at least one node v shared by
both e and h. In the case of scientific collaboration, the local neighborhood of a team is composed of
the set of other teams that are directly connected to the focal team through at least one member or
knowledge interlock.

Key hypergraph characteristics

The core components of hypergraphs—nodes, ties, hyperedges, hyperties, and local neighborhoods—
give rise to structural characteristics at multiple levels (e.g., node, hyperedge, hypergraph levels)
(Sullivan, Zhu, Lungeanu, & Contractor, 2012). Thus, hypergraph approaches are particularly useful
for characterizing the multilevel ecosystems with connections among people, knowledge, and/or
other types of nodes organized into teams. Below we present a short description of these metrics.
The full description of these metrics, together with the mathematical equations and the graphical
representation, is available in the Supplemental Material Appendix.

Node metrics
At the nodal (i.e., person, keyword) level, we compute a node’s degree and a node’s hyperdegree.
Node degree refers to the number of distinct nodes with which a focal node is connected (Ghoshal,
Zlatic, Caldarelli, & Newman, 2009; Wang, Rong, Deng, & Zhang, 2010), a node’s hyperdegree is the
number of hyperedges (e.g., teams) in which the node participates (Estrada & Rodríguez-Velázquez,
2006; Wang et al., 2010; Zlatic, Ghoshal, & Caldarelli, 2009).

Hyperedge metrics

At the level of a single team (i.e., a hyperedge), hyperedge degree reflects to the number of other
hyperedges (teams) with the focal hyperedge (team) is interlocked via overlapping members
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(Wang et al., 2010; Zlatic et al., 2009). Next, a hyperedge clustering coefficient reflects the degree
to which the set of teams that are directly connected to the focal team—the team’s “local”
neighborhood—exhibit the network property of triadic closure among teams through interlock
connections. A hyperedge clustering coefficient for a focal team represents the degree to which
the set of teams that are directly interlocked with the focal team are, themselves, interlocked with
one another.

Hypergraph metrics

Hypergraph metrics move beyond characterizing patterns of connections surrounding individual
nodes or individual teams to characterize the patterns of team interlocks for an entire scientific
ecosystem (i.e., the hypergraph level). We consider three hypergraph metrics in particular: First,
hypergraph density represents the proportion of interlocks among teams out of the total possible
number of team interlocks (e.g., through overlapping membership; through overlapping knowledge).
Second, a “hypergraph clustering coefficient” which indicates the degree to which all possible triads
of teams in a hypergraph exhibit the property of closure. A final hypergraph metric, hypergraph
centralization indicates the degree of variance in the distribution of hyperedge degree centrality
scores across a hypergraph.

Illustrative hypotheses linking characteristics of team interlock ecosystems to
scientific team assembly

Adopting a team-interlock perspective to conceptualize scientific collaboration and a hypergraph
methodological approach to characterize structures of scientific ecosystems enables researchers to
more accurately understand the ecosystem factors influencing team assembly. Research on teams has
shown that important phenomena related to social bonding (e.g., cohesion, trust), knowledge
generation, and learning emerge at the level of the team as a whole, and that teams often differ
from one another substantially in terms of their team-level properties (Edmondson, 1999; Kozlowski
& Klein, 2000). Thus, we propose that in addition to person-to-person connections among research-
ers, the patterns of interlock connections between teams are relevant to team assembly. The over-
arching question addressed by this research is: What structural characteristics of scientific ecosystems
affect the likelihood that sets of researchers will assemble into a new team?

To demonstrate how this research question might be addressed, we provide illustrative hypoth-
eses considering the extent to which team assembly is influenced by three of the key structural
characteristics of scientific ecosystems: (1) hypergraph clustering coefficient; (2) hyperedge clustering
coefficient; and (3) hypergraph centralization. These three characteristics are similar to three char-
acteristics of person-to-person social networks (e.g., Oh, Chung, & Labianca, 2004; Oh, Labianca, &
Chung, 2006) that have been shown to have important implications for individual and collective
outcomes (i.e., “social network clustering”, “individual brokerage,” and “social network centraliza-
tion,” respectively). We extend work on person-to-person social networks to explore three research
questions considering the degree to which the presence of these properties within scientific ecosys-
tems influences team assembly.

Research Question 1: Are researchers more likely to assemble into a team in
ecosystems characterized by greater “coherence” (i.e., higher hypergraph clustering
coefficient scores)?

Substantively, a hypergraph clustering coefficient characterizes the extent to which teams tend to be
organized into coherent intellectual communities, whose membership and knowledge overlap.
Ecosystem coherence has the potential of impacting the assembly of new scientific teams because
the creation of new knowledge is a result of a social process in which individual researchers share
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expertise and gain legitimacy by working across overlapping teams (Acedo, Barroso, Casanueva, &
Galán, 2006; Moody, 2004; Wuchty et al., 2007).

The process of sharing and learning diverse knowledge, however, can be complicated by the loss
of meaning during the transfer process (Grant, 1996). As a result, scholars argue that the transfer and
combination of knowledge needs to be facilitated by the development of a common language and
exchange norms (Grant, 1996; West & Anderson, 1996). A more coherent ecosystem structure—one
with higher levels of clustering—reflects the presence of a community of scientists who have built
common socio-cognitive models that allow them to adopt a common language for the knowledge
that they exchange. Such cognitive models are necessary in order to recognize the knowledge held by
others, understand current knowledge sharing practices, and understand the rules to identify new
and useful knowledge and recombine prior knowledge in order to generate new ideas (Murray &
O’Mahony, 2007; Uzzi & Spiro, 2005). For example, Murray and O’Mahony (2007) argue that in
order for innovation to occur, existing knowledge must be shared within intellectual communities,
but, in addition, knowledge must be reused, recombined, and accumulated. Higher levels of
ecosystem coherence offer opportunities for scientists to share, search for, access, and apply knowl-
edge. Accordingly, we hypothesize that scientific teams are more likely to assemble in ecosystems
that are coherent by virtue of having triadic closure among teams based on overlapping members,
overlapping knowledge domains or both (the intersection of the team and knowledge interlocks).

Hypothesis 1: Scientific teams are more likely to assemble in ecosystems that are coherent by virtue of
having triadic closure among teams based on overlapping members.

Hypothesis 2: Scientific teams are more likely to assemble in ecosystems that are coherent by virtue of
having triadic closure among teams based on overlapping knowledge domains.

Hypothesis 3: Scientific teams are more likely to assemble in ecosystems that are coherent by virtue of
having triadic closure among teams based on having both overlapping members and overlapping
knowledge domains.

In summary, we have proposed three hypotheses linking scientific ecosystems to the assembly of
teams. The first specified the effect of ecosystem coherence in team member interlocks, whereas the
second specified the effect of ecosystem coherence in knowledge interlocks. Understanding the joint
effects of ecosystem coherence captured by the intersection of member and knowledge interlocks
(Hypothesis 3) is important because it prompts us to further inquire: Which of these structural
properties is more important for team assembly: ecosystem coherence with regard to: (a) team member
interlocks, (b) team knowledge interlocks, or (c) intersection of team member and knowledge interlocks?

Next, we turn to the second of our three research questions exploring how ecosystems influence
team assembly.

Research Question 2: Are researchers more likely to assemble into a team when their
local neighborhoods exhibit greater “local brokerage” (i.e., lower hyperedge
clustering coefficient scores)?

Although our first three hypotheses posit that closure across the broader ecosystem (i.e., ecosystem
coherence) support team assembly, scholars have also pointed out that excessive closure might hurt
creativity. In fact, research suggests that having a sufficient level of diversity in knowledge and social
connections is a critical factor underpinning creative and/or innovate ideas (Fleming, Mingo, &
Chen, 2007; Guimera et al., 2005; Reagans, Zuckerman, & McEvily, 2004; Uzzi & Spiro, 2005).
Substantively, a hyperedge clustering coefficient metric represents the degree of diversity (or lack
thereof) in team memberships and expertise in a team’s local community. When there are no
interlocks between the set of teams that are interlocked with a focal team, the hyperedge clustering
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coefficient for that focal team would be zero. In this case, the members of the focal team are uniquely
positioned to draw upon and combine different resources from other teams of which they are also
members. Thus, a lower hyperedge clustering coefficient is an indicator that the team is a broker
between other teams.

In person-to-person networks, research suggests individuals who occupy positions of brokerage
—those with connections to people who themselves are unconnected—can reap career benefits, in
part, because they have greater access to diverse ideas (Burt, 1992). Likewise, we expect that a team
of scientists whose local ecosystem communities exhibit lower levels of closure (i.e., higher
brokerage at the team-level) are more likely to have access to diverse ideas that lead to new
research projects. Hence, our next set of hypotheses posit teams will be more likely to assemble
when there is sufficient opportunity for potential team members to broker ideas from other teams
they belong to, but which do not have overlapping members (besides them) or overlapping
knowledge domains. Accordingly:

Hypothesis 4: Scientific teams are more likely to assemble when they are brokering ties within the local
neighborhood of their team member interlock ecosystem.

Hypothesis 5: Scientific teams are more likely to assemble when they are brokering ties within the local
neighborhood of their team knowledge interlock ecosystem.

Hypothesis 6: Scientific teams are more likely to assemble when they are brokering ties within the local
neighborhood of their team member and knowledge interlock ecosystem.

Whereas these hypotheses test specific predictions rooted in prior research on network brokerage,
we also explore the question of which structural properties are more important to team assembly:
local brokerage with regard to: (a) team member interlocks, (b) team knowledge interlocks, or (c) team
member and knowledge interlocks?

Finally, we turn to the last of our three research questions exploring how ecosystems influence
team assembly.

Research Question 3: Are researchers more likely to assemble into a team in
ecosystems characterized by greater “ecosystem decentralization” (i.e., lower
hypergraph centralization scores)?

A final consideration when sets of scientists decide to assemble into a new team is whether there are
sufficient opportunities to impact the broader scientific community through the generation of
scientific output. As Murray and O’Mahony (2007) note, expectation of reward is a key considera-
tion when engaging in creative work. One ecosystem characteristic that may impact whether a set of
scientists expect rewards for assembling into a new team is the degree to which the ecosystem is
centralized around one or a few teams that are interlocked with many other teams (i.e., hypergraph
centralization).

On the one hand, well-developed theories and concepts are beneficial for the advancement of
scientific fields because they provide a sense of direction for knowledge development and enable
understanding of key research topics (Kuhn, 1996). High ecosystem centralization indicates that a
few teams of productive individuals have successfully achieved the development of conceptual
frameworks and have disseminated those ideas by collaborating with many other teams. As such,
higher ecosystem centralization signify ecosystems with less opportunity for impact. Thus, scientists
operating in highly centralized ecosystems may not have the motivation to assembly into a new
team, unless the new team does contains members of a highly central team. Thus, we posit that when
ecosystems are more de-centralized (i.e., less centralized), scientific teams are more likely to
assemble.
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Hypothesis 7: Scientific teams are more likely to be assembled when the ecosystem formed by team
member interlock is highly decentralized.

Hypothesis 8: Scientific teams are more likely to be assembled when the ecosystem formed by team
knowledge interlock is highly decentralized.

Hypothesis 9: Scientific teams are more likely to be assembled when the ecosystem formed by team
member and knowledge interlock is highly decentralized.

Here, again, we explore the question of which of these effects is more important: Decentralization
in a (a) team member interlock, (b) team knowledge interlock, or (c) team member and knowledge
interlock ecosystem?

Method

We deploy a novel hypergraph methodology to test our hypotheses using bibliographic data about
teams submitting research proposals to a Clinical and Translational Science Award (CTSA) compe-
tition hosted at a large Midwestern University and funded by the National Institutes of Health
(NIH). A total of 101 research teams, consisting of 147 participants, submitted proposals in two
rounds of the grant competition. Given that we are examining the team assembly process, we
excluded 47 proposals that were solo-authored. Additionally, eight proposals were excluded because
either the exact same proposal team submitted proposals in both rounds of the competition (three
teams) or because of data collection issues (five teams). The final dataset contains 46 proposals co-
authored by 98 scientists, out of which only four proposals were awarded.

For each proposal team, we extracted team members’ collaborators and the collaboration (co-
authorship) relations among those collaborators. First, we used the Web of Science (WoS)
database provided by Thomson Reuters to extract each team member’s publication history.
Author name disambiguation is a recognized issue when constructing bibliometric measures
(Torvik, Weeber, Swanson, & Smalheiser, 2005). This is the problem of ensuring that we only
consider, for instance, the publications by John Smith who submitted a research proposal and
not others with the same name. To overcome this limitation, we manually verified each
publication against researchers’ resumes available on the institution website. Second, we identi-
fied all co-authors listed on the above publications and disambiguated their names. For example,
“Smith, J” and “Smith, JH” were considered same person. This is because the probability that
one researcher will collaborate with two different researchers named “Smith, J” and “Smith, JH”
is very low. Third, we extracted all publications of the extended list of co-authors from the WoS
database. We considered only those publications that were co-authored by at least two research-
ers from our dataset to be valid.

Based on this information, we created 46 unique team interlock ecosystems (i.e., one for each
proposal team). Each interlock ecosystem included the focal proposal team, all of the focal team’s
interlocking teams (all publications co-authored by members of the focal team), and all of the
second-order interlocking teams connected to those initial interlocking teams (all publications co-
authored by co-authors of the focal team). Additionally, for each publication included in the
ecosystem, we extracted both the “author keywords” (i.e., keywords provided by the original authors)
and the “keywords plus” (i.e., keywords extracted from the titles of the cited references by Thomson
Reuters) available in the WoS database. Therefore, each team ecosystem is formed from teams (i.e.,
hyperedges) that contain two type of nodes: scientists and keywords. The teams are linked together
through a team membership interlock, team knowledge (keywords) interlock, or the intersection of
the team membership and knowledge interlock. It is important to note that this depiction of the
scientific ecosystem begins with interlocks based on overlapping team membership and then
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measures the degree to which teams with interlocking membership also have overlap on the topics
studied by the focal team.

Figures 2a–2c present the visual representation of one of the 46 team interlock ecosystems from
our dataset. As shown in this figure, the team interlocks (i.e., hyperties between teams) differ when
we consider a network based on member interlock, knowledge interlock, or the intersection of the
member and knowledge interlock.

Figure 2a. A random sample team ecosystem from our dataset (ecosystem with 1612 teams, 246 scientists, and 5,462 keywords).
The green diamond node represents the focal team (team that was assembled). The red dots represent teams in the local
ecosystem (with which they had direct overlapping members). The black dots represent the remaining teams in the ecosystem
(with which they had indirect overlapping members via the teams represented by the red dots). The links are based on team
member interlock.

Figure 2b. A random sample team ecosystem from our dataset (ecosystem with 1612 teams, 246 scientists, and 5,462 keywords).
The green diamond node represents the focal team (team that was assembled). The red dots represent teams in the local
ecosystem (with which they had direct overlapping members). The black dots represent the remaining teams in the ecosystem
(with which they had indirect overlapping members via the teams represented by the red dots). The links are based on team
knowledge interlock.
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Hypergraph indices representing team interlock ecosystem characteristics

In order to characterize properties of coherence, brokerage, and centralization for each of the 46 team
interlock ecosystems, we computed a set of hypergraph-based descriptive metrics corresponding to
each concept. Ecosystem coherence was computed using the hypergraph clustering coefficient measure.
As mentioned previously, hypergraph clustering coefficient indicates the degree to which all possible
triads of teams exhibit closure across a hypergraph. A high hypergraph clustering coefficient indicates
that there is a high amount of overlap or “coherence” across the ecosystem, based on teams that share
common members (team member interlock), common knowledge (team knowledge interlock), or the
combination of members and knowledge (team member and knowledge interlock).

Local brokerage was computed using the hyperedge clustering coefficient metric. The hyperedge
clustering coefficient is defined as the amount of overlap that exists among the teams that share
common members with the focal team (team member interlock), or amount of overlap that exists
among the teams that share the same keywords (team knowledge interlock) or both (the intersection
of the team member and knowledge interlock). It is computed as the density of ties among the alters
of the focal team. For instance, when there is no overlapping team membership among the teams
with which the focal team members co-authored, the hyperedge clustering coefficient would be zero.
In other words, high clustering (or low brokerage) means that researchers tend to collaborate with
the collaborators of their collaborators.

Ecosystem decentralization was computed using the hypergraph centralization measure.
Hypergraph centralization indicates the degree of variance in the distribution of teams’ degree
centrality scores across the ecosystem. In other words, a high ecosystem centralization implies that
one or a few teams have a disproportionate number of team interlock connections with other teams
based on overlapping membership and/or overlapping knowledge domain.

Ecosystem simulation analytic approach

The aforementioned descriptive metrics were computed for each of the 46 ecosystems in which each
of the 46 focal (proposal) teams were embedded. However, by themselves these descriptive measures

Figure 2c. A random sample team ecosystem from our dataset (ecosystem with 1612 teams, 246 scientists, and 5,462 keywords).
The green diamond node represents the focal team (team that was assembled). The red dots represent teams in the local
ecosystem (with which they had direct overlapping members). The black dots represent the remaining teams in the ecosystem
(with which they had indirect overlapping members via the teams represented by the red dots). The links are based on team
member and knowledge interlock both being present.
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do not tell us if the relevant metric is high or low—as compared to chance, captured by a null model.
Therefore, to test our hypotheses, we developed a computational technique to compare the observed
team ecosystems with simulated null models. For each team ecosystem, which is a network of teams,
we began by generating 200 simulated synthetic networks which served as the null models. The
output of the simulation included means, δsim, and standard deviations, σ δsimð Þ, for the following
measures: hypergraph clustering coefficient, hyperedge clustering coefficient of the focal team, and
hypergraph centralization. Second, we tested whether the frequency distribution of these measures in
the null models were normally distributed. Third, we tested our hypotheses by comparing the
ecosystem metrics generated from the simulated networks with the observed ecosystem.
Specifically, we computed the z-scores of the observed measures relative to the random
measures: zðδobsÞ ¼ δobs � δsimð Þ=σ δsimð Þ.

Null model simulation

For each of the 46 focal team interlock ecosystems, we created a null model reflecting a set of random
synthetic networks that incorporate realistic aspects of the observed data and its network structure. In
particular, the null model for each ecosystem was based on generating synthetic networks that shared
the following empirical facts with the observed ecosystems: the number of teams, the number of
authors per team, and the number of keywords per team. Therefore, the null model preserves for each
ecosystem the same number of teams, authors, and keywords as our observed ecosystems.

In order to test the team member interlock hypotheses (H1, H4, and H7), we started from the
observed network and generated 200 random samples, while holding constant the number of authors,
the number of publications, the distribution number of authors per publication, and the distribution of
number of publications per author. In order to test the team knowledge interlock hypotheses (H2, H5,
and H8), we generated 200 random samples, fixing the number of keywords, the number of publica-
tions, the distribution number of keywords per publication, and the distribution of number of
publications per keyword. Finally, in order to test the team member and knowledge interlock
hypotheses (H3, H6, and H9), we generated 200 random samples, fixing the number of authors and
keywords, the number of publications, the distribution number of authors and keywords per publica-
tion, and the distribution of number of publications per author and per keyword.

For eachof the 200 simulated ecosystems,we computed the samehypergraphmetricsweobtained for the
observed ecosystem.We then computed a z-score comparing each of the observed hypergraphmetrics with
the distribution of that correspondingmetric in the 200 simulated ecosystems. A positive z-score indicates a
score that is higher than expected by chance. A negative z-score indicates a score that is less than expected by
chance. The larger the z-score, the greater the difference between the observed score and the mean score
obtained from simulations. Since utilizing the z-score assumes that the data is a normally distributed, we
tested the distribution of each of the hypergraph metrics for each ecosystem. We computed Skewness/
Kurtosis values for each metric obtained from the simulation of the 46 team ecosystems. Using Bulmer’s
(1979) rule of thumb,we assessed if each of the distributionswere approximately symmetric (i.e., skewness is
between −½ and +½,) or moderately skewed (i.e., skewness is between −1 and −½ or between +½ and +1)
for all ecosystems. Furthermore, we also conducted the Kolmogorov-Smirnov test for normality which
yields a p-value for each metric for each ecosystem. A p-value higher than 0.05 implies that the distribution
is normal. When a distribution is deemed not to be normal, we do not report the z-score results.

Results

Descriptive statistics

Table 1 and Figures 3–5 provide descriptive information about our team ecosystems. We examine
traditional descriptive statistics such as the number of observed teams, authors, and keywords, and features
of team interlocks. We also examine whether the team interlock structures follow a power law distribution.

12 A. LUNGEANU ET AL.
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Figure 3. Degree distribution for node type scientist (team ecosystem T024).

Table 1. Descriptive statistics.

Variable Metric Mean SD MIN MAX

Proposal team: Team size 2.39 0.61 2 4
Ecosystem - general measures Hypergraph - general measures
Ecosystem: Number of teams in the
ecosystem

Number of hyperedges in the hypergraph 2441.93 2572.52 47 8576

Ecosystem: Number of authors in the
ecosystem

Number of nodes (node type = scientist) in the
hypergraph

242.67 205.02 14 925

Ecosystem: Number of keywords in
the ecosystem

Number of nodes (node type = keyword) in the
hypergraph

5420.13 4720.11 238 15589

Local ecosystem: Number of teams
(direct links) to the focal team

Local neighborhood: number of hyperedges with
direct hyperties to the focal hyperedge

143.78 122.81 12.00 615.00

Local ecosystem: Number of unique
teams (direct links) to the focal
team

Local neighborhood: number of unique
hyperedges with direct hyperties to the focal
hyperedge

140.28 119.96 12.00 596.00

Team member interlock
Density Hypergraph Density 0.15 0.11 0.02 0.44
Centralization Hypergraph Centralization 0.26 0.09 0.11 0.43
Ecosystem coherence Hypergraph Clustering coefficient 0.85 0.05 0.74 0.95
Local closure Hyperedge (local) clustering coefficient 0.61 0.15 0.32 0.93
Team knowledge interlock
Density Hypergraph Density 0.05 0.07 0.01 0.35
Centralization Hypergraph Centralization 0.15 0.07 0.07 0.33
Ecosystem coherence Hypergraph Clustering coefficient 0.57 0.05 0.50 0.75
Local closure Hyperedge (local) clustering coefficient 0.16 0.15 0.02 0.72
Team member & knowledge
interlock

Density Hypergraph Density 0.02 0.04 0.00 0.18
Centralization Hypergraph Centralization 0.09 0.07 0.01 0.28
Ecosystem coherence Hypergraph Clustering coefficient 0.60 0.07 0.40 0.76
Local closure Hyperedge (local) clustering coefficient 0.11 0.11 0.01 0.50

N = 46 team ecosystems
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Team descriptive statistics

The team ecosystems ranged from being comprised of between 47 and 8,576 teams (M = 2,441.93,
SD = 572.52), each with between 14 and 925 unique authors (M = 242.67, SD = 205.02), and between
238 and 15,589 unique keywords (M = 5,420.13, SD = 4,720.11). Table 1 presents the overall
descriptive statistics for the observed team ecosystems we created around each focal proposal.
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Figure 5. Hyperedge degree distribution (team ecosystem T024).
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Figure 4. Degree distribution for node type keyword (team ecosystem T024).
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Generally, all hypergraph metrics decrease as we move from team member interlocks to team
knowledge interlocks to the combined team member and knowledge interlocks. The ecosystems
have low density, and, as expected, the density is lowest for the combined team member and
knowledge interlocks, because there are fewer hyperties between teams when the ecosystems are
based on the presence of both, that is the intersection of, member and knowledge interlocks.
Furthermore, the ecosystems have an average clustering coefficient of 0.85 (team member inter-
locks), 0.57 (team knowledge interlocks), and, respectively, 0.60 (combination of team member and
knowledge interlocks).

As discussed previously, a hypergraph approach enables us to compute different degree metrics:
node degree, node hyperdegree, and hyperedge degree. To illustrate the differences between node
degree and node hyperdegree we use one randomly selected team ecosystem from our dataset. A
quick examination of these measures provides interesting insights. For example, in the ecosystem for
team T024, a scientist can be linked to a maximum of 466 scientist (i.e., maximum node degree for
node type scientist in ecosystem T024) and to a maximum of 433 teams (i.e., maximum node
hyperdegree for node type scientist in ecosystem T024). See Figure 3 for a presentation of the degree
distribution for node type scientist. However, a keyword can be linked to maximum of 998 other
keywords (i.e., maximum node degree) but only to a maximum 100 teams (i.e., maximum node
hyperdegree). Figure 4 presents the degree distribution for node type keywords. This is an important
distinction when we discuss member or knowledge overlap and how far knowledge can spread. This
property of knowledge spread relative to team member spread raises an interesting feature of
ecosystems. Whereas members have fewer other members to reach out to, they have far more
knowledge domains with which they can connect.

Power law distribution

Next, we examined how team interlocks are distributed in the ecosystem. Specifically, we explored
whether the team interlock structures exhibit a specific pattern, such as a power law distribution
(Barabási & Albert, 1999), i.e., P kð Þ,k�γ, where k is the degree and P(k) is the fraction of hyperedges
that have the degree k. A power law distribution will show that the most hyperedges (i.e., teams)
have a low degree and a few hyperedges have a very high degree. This situation will indicate a
hierarchy in the ecosystem. Figure 5 presents the hyperedge degree distribution. None of the team
interlock ecosystems in our sample followed a power law distribution. This could have been an
artifact of the way we constructed the teams’ ecosystems: We started from the focal team and
considered only those teams (i.e., scientific articles), authors and keywords, that are linked to the
focal team directly in one step or indirectly in two steps. Therefore, we excluded the collaborating
teams for those teams that are more than two-steps away from the focal team and hence do not
belong to the team ecosystem.

Inferential statistics: Hypothesis testing

Before interpreting the results of our hypotheses, it is important to acknowledge that our analysis
examines the ecosystem structures of those teams that successfully assembled and submitted
grant proposals. Therefore, our analysis does not include those researchers who intended to
collaborate and submit proposals, but never submitted the proposals. However, given that we
include teams that submitted proposals in two rounds of the grant competition, we are cautiously
confident that researchers who had the intention to submit a proposal and had started to
collaborate on writing the proposal, had the opportunity to submit the grant proposal in the
specified time frame. Furthermore, as discussed above, to partially address this limitation, our
analysis compares the observed ecosystem of the assembled team with a set of random simulated
ecosystems that match basic characteristics of the observed ecosystem in terms of members,
teams, and knowledge areas.
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Ecosystem coherence

Our first set of analyses examine the level of coherence in the scientific ecosystem, and the
overarching Research Question 1: Are scientists more likely to assemble into a team in ecosystems
characterized by higher levels of clustering (i.e., greater ecosystem coherence)? Table 2 presents the
hypergraph clustering coefficient for the observed ecosystems and their z-scores based on 200
simulations. A positive z-score indicates a score that is higher than expected by chance. A negative
z-score indicates a score that is less than expected by chance. The larger the z-score, the greater
difference there is between the score and the mean score obtained from simulations.

Hypothesis 1 posited that scientific teams are more likely to assemble within team ecosystems
characterized by greater coherence in team member interlocks. The simulation results showed that
the observed hypergraph clustering coefficient in the team member interlock network is higher than
expected by chance for all 46 team ecosystems. The results support Hypothesis 1: team ecosystem
coherence increases the likelihood for a team to assemble.

Hypothesis 2 posited that scientific teams are more likely to assemble within team ecosystems
characterized by greater coherence in team knowledge interlocks. The simulation results showed that
the observed hypergraph clustering coefficient in the team knowledge interlock network is higher
than expected by chance for 21 team ecosystems and lower than expected by chance for 25 team
ecosystems. Interestingly, our hypothesis is supported only for small size team ecosystems. For large
ecosystems, ecosystem coherence in team knowledge interlocks does not predict team assembly. This
result is explained by the fact that large ecosystems contain interdisciplinary teams that are
composed of researchers from different disciplines that publish both single discipline and inter-
disciplinary articles. The interdisciplinary articles are linked to multiple single discipline articles by
virtue of using the same keywords, but the single discipline articles are not interlocked. Therefore,
the coherence based on knowledge interlock is lower than expected by chance in such large
ecosystems.

Hypothesis 3 posited that scientific teams are more likely to assemble within team ecosystems
characterized by greater coherence in the intersection of the team member and knowledge interlocks.
The simulation results showed that the observed hypergraph clustering coefficient in the member
and knowledge interlock network is higher than expected by chance for all 46 team ecosystems. The
results support our hypothesis: team ecosystem coherence, where the interlock represents the
intersection of the member and knowledge interlock network increases the likelihood for a team
to assemble.

We concluded our investigation of the effect of ecosystem coherence on team assembly with
the exploratory research question: Which interlock type is more important? To address this
question, we conducted paired sample t-tests to compare each pair of ecosystem clustering
coefficient scores: team member interlocks, team knowledge interlocks, and the intersection of
member and knowledge interlocks. Examining the results of these t-tests shows the hypergraph
clustering coefficient for team member interlock networks (M = 0.85, SD = 0.01) is significantly
higher than the hypergraph clustering coefficient effect for team knowledge interlock networks
(M = 0.57, SD = 0.01); t(45) = 31.92, p = 0.000, and significantly higher than the hypergraph
clustering coefficient for the intersection of the team member and knowledge interlock networks
(M = 0.60, SD = 0.01); t(45) = 30.17, p = 0.000. Furthermore, paired t-test results show that the
hypergraph clustering coefficient for team knowledge interlock networks (M = 0.57, SD = 0.01)
is significantly lower than the hypergraph clustering coefficient for the intersection of the team
member and knowledge interlock networks (M = 0.60, SD = 0.01); t(45) = −2.99, p = 0.002.
These results suggest that high levels of ecosystem coherence with regard to team member
interlock networks is most important to team assembly, and relatively more so than high levels
of ecosystem coherence for the intersection of the member and knowledge interlock networks or
for team knowledge interlock networks alone.
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Local brokerage

Our second set of analyses examined the level of local brokerage and the overarching Research
Question 2: Are scientists more likely to assemble into a team when their local ecosystems are
characterized by lower levels of clustering (i.e., greater local brokerage)? For these analyses, we
compared the local clustering coefficient of the focal team with the overall or global ecosystem
clustering coefficient. Therefore, we conducted a paired sample t-test to compare the local and global
clustering coefficient.

Table 2. Hypergraph clustering coefficient.

Team member interlock Team knowledge interlock Team member & knowledge interlock

Team Id Observed value Z-score Observed value Z-score Observed value Z-score

T001 0.86 121.16*** 0.75 32.38*** 0.61 27.36***
T002 0.93 228.69*** 0.68 7.05*** 0.76 105.56***
T003 0.88 194.66*** 0.59 44.67*** 0.65 83.02***
T004 0.85 280.19*** 0.64 53.88*** 0.73 157.05***
T005 0.89 284.23*** 0.65 75.99*** 0.68 129.04***
T006 0.91 223.14*** 0.64 71.70*** 0.67 72.02***
T007 0.95 291.49*** 0.69 139.24*** 0.74 163.99***
T008 0.93 812.33*** 0.55 40.98*** 0.56 125.09***
T009 0.93 600.68*** 0.64 29.04*** 0.64 104.34***
T010 0.88 352.07*** 0.56 43.90*** 0.61 192.64***
T011 0.87 759.84*** 0.58 −9.90*** 0.63 242.25***
T012 0.80 423.79*** 0.55 55.97*** 0.61 233.71***
T013 0.85 839.32*** 0.59 −50.24*** 0.61 258.03***
T014 0.93 1284.03*** 0.50 41.77*** 0.64 426.10***
T015 0.86 830.83*** 0.50 −61.17*** 0.57 202.08***
T016 0.81 142.83*** 0.60 30.23*** 0.60 156.36***
T017 0.89 354.23*** 0.58 149.31*** 0.66 318.89***
T018 0.88 777.47*** 0.52 −10.65*** 0.63 336.57***
T019 0.85 709.02*** 0.57 90.24*** 0.62 314.02***
T020 0.94 1124.12*** 0.62 −92.02*** 0.69 315.51***
T021 0.88 551.96*** 0.51 −34.63*** 0.54 209.73***
T022 0.81 507.98*** 0.55 175.28*** 0.43 140.96***
T023 0.82 1013.03*** 0.60 −133.95*** 0.59 252.39***
T024 0.86 556.24*** 0.60 206.00*** 0.64 417.94***
T025 0.89 630.19*** 0.60 43.81*** 0.67 312.78***
T026 0.77 684.44*** 0.55 120.19*** 0.61 396.07***
T027 0.83 947.78*** 0.54 −58.12*** 0.55 312.86***
T028 0.82 821.08*** 0.60 −49.84*** 0.61 304.41***
T029 0.88 713.93*** 0.52 −261.31*** 0.55 228.93***
T030 0.88 1317.14*** 0.58 −69.06*** 0.66 409.78***
T031 0.84 930.66*** 0.54 −24.71*** 0.61 377.31***
T032 0.86 876.08*** 0.51 −326.27*** 0.56 234.78***
T033 0.83 1197.30*** 0.57 −102.37*** 0.59 555.33***
T034 0.87 1325.66*** 0.53 −38.17*** 0.63 491.63***
T035 0.86 1565.94*** 0.58 −289.57*** 0.65 517.23***
T036 0.78 785.48*** 0.55 25.58*** 0.57 466.46***
T037 0.86 1665.84*** 0.55 −298.17*** 0.60 499.70***
T038 0.79 483.72*** 0.56 87.82*** 0.53 506.50***
T039 0.82 980.39*** 0.56 −201.52*** 0.56 462.03***
T040 0.78 1578.92*** 0.54 −449.68*** 0.54 578.55***
T041 0.79 1923.84*** 0.57 −165.54*** 0.43 279.81***
T042 0.82 1848.76*** 0.54 −409.16*** 0.62 853.42***
T043 0.79 2045.62*** 0.57 −476.72*** 0.58 675.79***
T044 0.74 1956.96*** 0.55 −900.15*** 0.53 544.91***
T045 0.78 2031.74*** 0.55 −645.67*** 0.40 233.40***
T046 0.79 2090.51*** 0.52 −579.41*** 0.56 702.76***

Notes:
1. Teams are sorted based on hypergraph size (from small to large).
2. Z-score is based on 200 simulations. Z-score is presented only for normal distribution frequencies. + 0.10 * 0.05 ** 0.01 ***
0.001.
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Hypothesis 4 posited that scientific teams are more likely to be assembled when they are
brokering ties within the local neighborhood of their team member interlock ecosystem. The paired
t-test showed that the focal team’s hyperedge clustering coefficient (M = 0.61, SD = 0.15) was
significantly lower than the overall hypergraph clustering coefficient (M = 0.85, SD = 0.01); t
(45) = −9.86, p = 0.000. The results support Hypothesis 4: Scientific teams are more likely to
assemble when there is more brokerage in the local neighborhood of their team member interlock
ecosystem than the global neighborhood.

Hypothesis 5 posited that scientific teams are more likely to be assembled when they are
brokering ties within the local neighborhood of their team knowledge interlock ecosystem. The
paired t-test showed that the focal team’s hyperedge clustering coefficient (M = 0.16, SD = 0.02) is
significantly lower than the hypergraph clustering coefficient (M = 0.57, SD = 0.01); t(45) = −23.77,
p = 0.000. The results support Hypothesis 5: Scientific teams are more likely to assemble when there
is more brokerage in the local neighborhood of their team knowledge interlock ecosystem than the
global neighborhood.

Hypothesis 6 posited that scientific teams are more likely to be assembled when they are
brokering ties within the local neighborhood of their team member and knowledge interlock
ecosystem. The paired t-test showed that the focal team’s hyperedge clustering coefficient
(M = 0.10, SD = 0.01) is significantly smaller than hypergraph clustering coefficient (M = 0.60,
SD = 0.01); t(45) = −35.03, p = 0.000. The results support Hypothesis 6: Scientific teams are more
likely to assemble when there is more brokerage in the local neighborhood of their team member
and knowledge interlock ecosystem than the global neighborhood.

We concluded our investigation of the effects of local brokerage on team assembly with the
exploratory research question: Which interlock type is more important? We conducted paired
sample t-tests to compare each pair of local clustering coefficient scores: team member interlocks,
team knowledge interlocks, and the intersection of member and knowledge interlocks. Examining
the results of these t-tests shows that the hyperedge clustering coefficient for team member interlock
networks (M = 0.61, SD = 0.02) is significantly higher than the hyperedge clustering coefficient for
team knowledge interlock networks (M = 0.16, SD = 0.02); t(45) = 14.02, p = 0.000 and significantly
higher than the hyperedge clustering coefficient for the intersection of the team member and
knowledge interlock networks (M = 0.11, SD = 0.01); t(45) = 18.95, p = 0.000. Furthermore, paired
t-test showed that the hyperedge clustering coefficient for team knowledge interlock networks
(M = 0.16, SD = 0.02) tends to be significantly higher than the hyperedge clustering coefficient for
team member and knowledge interlock networks (M = 0.11, SD = 0.01); t(45) = 7.122, p = 0.000.

These results suggest that high local brokerage (i.e., low hyperedge clustering coefficient) in the
intersection of the team member and knowledge interlock networks has a stronger effect on team
assembly than local brokerage in knowledge or team member interlock networks alone.

Ecosystem decentralization

Our last set of analyses examined the level of hypergraph centralization across the scientific
ecosystem, and the Research Question 3: Are scientists more likely to assemble into a team in
ecosystems characterized by lower levels of centralization (i.e., greater ecosystem decentralization)?
Table 3 presents the hypergraph centralization for the observed ecosystems and their z-scores based
on 200 simulations. A positive z-score indicates a score that is higher than expected by chance. A
negative z-score indicates a score that is less than expected by chance. The larger the z-score, the
greater difference there is between the score and the mean.

Hypothesis 7 posited that scientific teams are more likely to assemble within team ecosystems
characterized by decentralization in team member interlocks. The simulation results showed that the
observed hypergraph centralization in the member interlock network is lower than expected by
chance for 44 out of the 46 team ecosystems. We further analyzed the two team ecosystems with high
hypergraph centralization. Our analyses showed that the members of the focal teams were also
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members of the highly central teams. So, the results support Hypothesis 7: Greater decentralization
in team member interlocks across a scientific ecosystem tends to increase the likelihood of team
assembly, unless the ecosystem is dominated by the members of the focal team.

Hypothesis 8 posited that scientific teams are more likely to assemble within team ecosystems
characterized by greater decentralization in team knowledge interlocks. The simulation results showed
that the observed hypergraph centralization in the team knowledge interlock network is lower than
expected by chance for 26 out of 46 teams. For the remaining 20 teams, the frequency distribution in the
null models did not follow a normal distribution, or the results showed that team knowledge interlock

Table 3. Hypergraph centralization.

Team member interlock Team knowledge interlock Team member & knowledge interlock

Team Id Observed value Z-score Observed value Z-score Observed value Z-score

T001 0.22 −26.15*** 0.33 −2.72** 0.21 −22.35***
T002 0.28 −43.12*** 0.33 −15.17*** 0.28 −14.93***
T003 0.32 −43.14*** 0.23 0.25
T004 0.27 −35.31*** 0.30 −2.25* 0.20 −5.43***
T005 0.43 10.83*** 0.33 4.51*** 0.22 2.36*
T006 0.39 −26.37*** 0.11 0.09
T007 0.36 23.83*** 0.23 −22.12*** 0.20 −22.26***
T008 0.24 −94.49*** 0.21 −23.11*** 0.16 −11.52***
T009 0.36 −49.94*** 0.13 0.12 7.44***
T010 0.29 −47.70*** 0.28 4.28*** 0.18 2.02+
T011 0.22 −63.85*** 0.16 −20.19*** 0.12 45.53***
T012 0.15 −66.19*** 0.22 12.81*** 0.10
T013 0.29 −57.87*** 0.20 −36.06*** 0.07 −23.49***
T014 0.37 −39.08*** 0.16 −25.42*** 0.09 14.41***
T015 0.31 −73.27*** 0.07 −22.71*** 0.06 37.68***
T016 0.32 −55.22*** 0.17 0.16
T017 0.36 −52.26*** 0.14 0.08 −11.57***
T018 0.25 −59.04*** 0.17 13.32*** 0.07 11.22***
T019 0.21 −33.74*** 0.23 0.11
T020 0.13 −119.98*** 0.12 −37.63*** 0.11 33.22***
T021 0.37 −82.26*** 0.11 1.41 0.06
T022 0.33 −45.04*** 0.09 −7.11*** 0.03 −9.18***
T023 0.39 −76.80*** 0.15 −16.30*** 0.08 27.58***
T024 0.22 −74.26*** 0.15 −8.15*** 0.07 6.90***
T025 0.28 −85.82*** 0.10 −30.85*** 0.10 77.60***
T026 0.18 −53.61*** 0.12 −13.34*** 0.03
T027 0.37 −83.60*** 0.09 0.05 19.87***
T028 0.20 −78.71*** 0.10 −31.49*** 0.11 80.59***
T029 0.30 −223.40*** 0.11 0.06 −12.80***
T030 0.18 −63.69*** 0.10 −31.76*** 0.07
T031 0.19 −54.94*** 0.08 −28.18*** 0.06 65.88***
T032 0.30 −85.36*** 0.09 −22.64*** 0.03 −20.48***
T033 0.33 −49.72*** 0.18 0.06 −13.46***
T034 0.14 −65.29*** 0.08 −19.13*** 0.03
T035 0.17 −66.85*** 0.09 −27.46*** 0.04 41.57***
T036 0.21 −89.40*** 0.07 −21.21*** 0.04 26.21***
T037 0.19 −84.23*** 0.15 12.70*** 0.06 41.44***
T038 0.42 −29.00*** 0.08 0.04
T039 0.25 −132.80*** 0.12 −18.66*** 0.04 −0.88
T040 0.17 −68.91*** 0.11 −18.23*** 0.03 25.74***
T041 0.13 −92.15*** 0.08 −23.58*** 0.01
T042 0.14 −62.07*** 0.15 −6.47*** 0.03 −1.88+
T043 0.17 −62.53*** 0.15 −1.43 0.02 −3.35**
T044 0.17 −68.71*** 0.14 0.04 11.60***
T045 0.11 −71.89*** 0.15 11.42*** 0.02
T046 0.15 −68.88*** 0.12 0.02

Notes:
1. Teams are sorted based on hypergraph size (from small to large).
2. Z-score is based on 200 simulations. Z-score is presented only for normal distribution frequencies. + 0.10 * 0.05 ** 0.01 ***
0.001.
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network is higher than expected by chance. These partial results might be explained by the fact that few
teams publish interdisciplinary articles that connect to a high number of single discipline articles, thus
having a high degree of centrality, which in turn generate ecosystems with high centralization.

Hypothesis 9 posited that scientific teams are more likely to assemble within team ecosystems
characterized by decentralization in the intersection of the team member and knowledge interlocks.
The simulation results showed that the observed hypergraph centralization in the intersection of the
team member and knowledge interlock network is lower than expected by chance in only for 14 out
of 46 teams. For the remaining 32 teams, the frequency distribution in the null models did not follow
a normal distribution or the results showed that team member and knowledge interlock network is
higher than expected by chance. Therefore Hypothesis 9 is not supported.

The results reveal the answer to our final exploratory question: Which is most important: decen-
tralization in a (a) team member interlock, (b) team knowledge interlock, or (c) intersection of team
member and knowledge interlock ecosystem?Given that only Hypothesis 7 was fully supported, there was
no reason to proceed with paired sample t-tests comparing the effects of each pair of ecosystem
centralization scores. Our results suggest that decentralization in the team member interlock network
is more important to team assembly as compared to decentralization in the knowledge interlock
network or the intersection of the team member and knowledge interlock network.

Discussion

Today’s most pressing problems necessitate that individuals work in teams. Social network
approaches have proved valuable in providing theoretical lenses and methodological approaches to
advance key questions about the assembly of teams. However, the network lens as it has been
previously applied, using one and two mode networks with scientists or teams as nodes, misses
important structural forces at the ecosystem level that shape the assembly of teams. Whereas some
prior research has recognized this shortcoming, this article advances conceptual thinking by intro-
ducing a novel set of metrics and methods to systematically explore the multilevel forces affecting
team assembly. By doing so, it makes two primary contributions.

Contribution #1: The effects of ecosystems on teams

This article elucidates the significance of team interlock ecosystems, arguing that their characteristics
determine the availability of unique knowledge teams use to solve complex issues, and the degree to
which knowledge is shared and new ideas are generated. Therefore, understanding the drivers of
team assembly requires modelling the ecosystem characteristics from which teams nucleate. There is
a well-worn adage in networks research that first people make networks, but then, networks make
the people (Padgett & Powell, 2012). The same can be extended to teams. First teams help us make
ecosystems, but then ecosystems make the team.

We examined two components of the collaboration ecosystems that we believe are especially
relevant to team assembly: team and knowledge interlocks. Our results demonstrated the potential of
the larger social (member interlocks) and cognitive (knowledge network interlocks) environment in
which scientists work to influence team assembly. Additionally, our depiction of scientific team
interlock ecosystems incorporates the distinct effects of proximal (i.e., local) neighborhood and as
well as distal (i.e., global) neighborhood effects on team assembly. We argue that this more nuanced
view is necessary in order to accurately capture the various features of scientific ecosystems that play
a role in team assembly.

Our findings make several substantive, albeit preliminary, contributions to the impact of ecosys-
tems on assembly of scientific teams. First, we find that scientific teams are more likely to assemble
when the global ecosystem formed by team member, team knowledge, and the confluence (or
intersection) between membership and knowledge interlocks form a coherent (i.e., cohesive) intel-
lectual ecosystem. Interestingly, we find that, as posited in Hypothesis 1, the extent to which the
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ecosystem exhibits teams with higher overlapping membership (as compared to overlapping knowl-
edge or the confluence or intersection of the two) is the most important motivator for teams to
assemble.

We also find that scientific teams are more likely to assemble when the local ecosystem exhibits
higher brokerage (i.e., low hyperedge clustering coefficient) for team member and knowledge interlocks
(the confluence or intersection between the two). Interestingly, the team member interlocks and team
knowledge interlocks each taken by themselves were less powerful motivators for teams to assemble. We
interpret these results as evidence that individuals are especially motivated to come together as a team
when they feel challenged to come up with new ideas that break norms and when they perceive that
their scientific endeavors will benefit from bringing diverse individuals and the accompanying resources
from other teams that do not have substantial member or knowledge overlap.

Finally, when examining global ecosystem decentralization, we only found support for our
hypothesis regarding team member interlocks (H7). Our findings show that the global ecosystem
decentralization in team member interlocks increases the likelihood for a team to assemble. A
decentralized ecosystem essentially means there is not one or a few dominant teams that have
member and/or knowledge overlap with a high number of other teams. Importantly, whereas
decentralization in interlocks among team members positively influenced team assembly, decentra-
lization in knowledge interlocks, or in the confluence (or intersection) of the team member and
knowledge interlock network did not motivate team assembly. Thus, the interlocks among people
were a stronger force than the interlocks among ideas. These insights about team assembly could not
be discerned using traditional network methods. And so our second primary contribution is the
advancement of a relatively new approach to the study of teams (and other collectives) using
network analysis based on hypergraphs.

Contribution #2: Development of hypergraph methodology for describing and testing
hypotheses about team ecosystems

We advanced the use of a hypergraph methodological approach, which better accounts for the nested
structure of individuals in teams and the interlocks among teams with regard to knowledge and
shared membership. Specifically, we model how characteristics of ecosystem coherence, local
brokerage, and ecosystem decentralization affect team-based assembly. We conceptualized collabora-
tion ecosystems as comprised of interlocking teams that overlap by virtue of shared members and
shared knowledge or research topics.

Specifically, we introduced hypergraph measures, which better characterize the nested structure of
multiple individuals and knowledge domains in multiple teams and the interlocks among them.
Hypergraph approaches take sets of nodes, or hyperedges, and examine hyperties of overlapping
members or knowledge domains existing between hyperedges. In our study, scientific articles (i.e.,
hyperedges) represent the members of a team and the knowledge areas they represent—the outcome
of assembly processes in which different types of nodes (scientists and knowledge topics) are
combined within an ecosystem of prior relations (i.e., hypergraph). We used the notion of local
hyperedge clustering coefficient to examine the effect of brokerage within the proximal (i.e., local)
neighborhood of focal team on team assembly. We used the notion of hypergraph clustering
coefficient to account for the cohesion in the team’s global ecosystem. And, finally, we used the
notion of hypergraph centralization to describe whether the team’s ecosystem is dominated by
central teams.

In addition to contributing to the development of new hypergraph metrics to describe ecosys-
tems, we also contribute new methods to test hypotheses about the impact of these metrics on team
assembly. Specifically, we proposed a methodology to test hypotheses by comparing the hypergraph
metrics in the observed ecosystem to those that were computed in randomly generated ecosystems
that matched the observed ecosystem in terms of number of teams, number of members in teams,
and number of knowledge areas in teams.
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Limitations and future directions

Our study advances a hypergraph approach to understanding scientific teams, and presents initial
evidence documenting substantively significant effects of the local and global ecosystem on team
assembly. However, there are a number of important limitations that need to be acknowledged. First,
it is important to recognize that we examined the factors influencing team assembly considering only
teams that had successfully assembled. We did not have access to the “invisible” collection of
individuals who considered submitting a proposal but did not get around to doing so. To partially
address this limitation, we compared the observed ecosystem of the assembled team with a set of
randomly simulated ecosystems. Future research should explore the development of an analytic
approach that compares the ecosystem of an assembled team with the observed ecosystem of a
random group of researchers, matched on some key characteristics, who never assembled into a
team.

Second, the ecosystem of teams used in this study was created based on a set of focal teams who
submitted research proposals to a specific grant competition. There are likely to be specifics of the
domain and competition that affect the nature of the ecosystem. Thus, it is important for future
work to continue to explore other types of collaborative ecosystem contexts. For example, it would
be valuable for future research to explore the effects of policy interventions like the creation of
centers or calls for learning communities or research coordination networks as discontinuities in
how teams assemble. Furthermore, future research should examine whether the results are supported
in other contexts. Our study examined the influence of team ecosystem structures on team assembly
in the area of clinical and translational science. It would be important to identify the ecosystem
structures influencing the assembly of teams and their subsequent team interactions within other
areas of research—and indeed beyond scientific collaboration to other contexts where teams are
increasingly being self-assembled to engage in critical tasks.

A third limitation concerns the creation of our knowledge network. We built our database of
keywords by identifying those keywords contained in the proposal of at least one team. However, the
entirety of available knowledge circulating within the ecosystems surrounding a focal team would
likely contain keywords that were in articles not written by these proposal teams. Future work on
knowledge interlocks should consider alternative methods of building knowledge networks.

A fourth limitation of this study is that we did not examine the consequences of team assembly.
The scope of this article was to develop the methodology to examine ecosystem forces driving the
assembly of teams. An interesting next question is, which team assembly mechanisms are beneficial
or detrimental in terms of the ultimate creativity and innovation produced by a new team. At the
ecosystem level, comparing the characteristics of multiple ecosystems could allow researchers to
explore questions of which ecosystem characteristics are more or less functional to spawning the
assembly of innovative teams. Although these cross-ecosystem comparisons were beyond the scope
of this article, the methodology developed here can easily be adapted to answer questions such as:
Which ecosystem factors are likely to explain why most teams form? And, are there different
ecosystem factors that explain why only some of those teams perform effectively?

A final limitation is the context of studying assembly in response to a call for funding proposals.
First, in some areas, funding does not play a major role in scientific advancement and the insights
from this study may not generalize to those areas. In the area examined here—clinical and
translational science—there is a very strong reliance on funding. But even in this case, the call
for proposals was for a relatively small amount of seed funding. It is possible that the ecosystem
included people who were already well funded and in established teams who would not be
motivated to submit a proposal even if the domain of their research is well aligned with the call
for proposals. It is noteworthy that we found significant ecosystem effects on team assembly
despite the aforementioned reasons why some might not be motivated to assemble into teams to
submit a proposal.
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Conclusion

Given the increasing importance of teams for innovation, research is needed to uncover the factors
that shape the assembly of teams in domains like scientific knowledge production. This article
advances this area by introducing new hypergraph metrics and simulation -methodologies for
inferentially testing hypotheses about the impact of team and knowledge interlocks on team
assembly. These efforts will pave the way for conceptual advances that have been called for by
practitioners as well as researchers studying teams, but heretofore, have remained largely unexplored
theoretically and empirically.
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