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Abstract 

Customers often compare and evaluate alternative products before making purchase decisions. 

Understanding customer preference is an important step for choice modeling in engineering design. This 

study presents a network approach to model co-consideration relations between products in supporting 

engineering design decisions. The network approach of co-consideration represents each product as a 

node, and a link between two nodes implies the two products are co-considered by customers. We 

compare two network-based modeling techniques – the multiple regression quadratic assignment 

procedure (MRQAP) and the exponential random graph model (ERGM). Using vehicle purchase data 

in the 2013 China market, we evaluate the goodness-of-fit of the two techniques at both network level 

and link level. The analysis indicates that the ERGM outperforms the MRQAP model. Specifically, the 

ERGM is able to characterize the interdependence of product co-considerations through various network 

configurations and therefore has a better fit of the data. The insights of co-consideration models help to 

understand market segmentation and product competitions as well as other types of product associations. 
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1 INTRODUCTION 

Choice modeling considers the prediction of product demand and market share as a function of 

engineering design attributes and target market description (Chen et al., 2012). Design optimization 

utilizes choice modeling techniques to estimate customer preferences and support engineering design 

decisions (Chen et al., 2012; Michalek et al., 2005; Sha et al., 2016; Sha and Panchal, 2014b). Previous 

choice models mostly assume that customers have bounded rationality and have underlying utilities to 

rank alternatives in a consideration set. So a key step of constructing choice models is first to determine 

the consideration set (Sha and Panchal, 2014a), which has become a central topic in understanding 

customers’ behavior (Carson and Louviere, 2014). By definition, customers’ consideration set, also 

known as choice set (Ben-Akiva and Lerman, 1985) or evoked set (Howard and Sheth, 1969), is “a set 

of product alternatives available to an individual who will seriously evaluate through comparisons 

before making a final choice” (Wang and Chen, 2015). As (Hauser et al., 2009) indicated “if customers 

do not consider your product, they can’t choose it.” 

From an enterprise perspective, understanding customer preferences in consideration is important for 

identifying crucial product features at the early stage of purchase. Existing studies (Shocker et al., 1991; 

Hauser and Wernerfelt, 1990) have also revealed the consideration set phenomenon, i.e., the size of the 

consideration set tends to be much smaller (roughly 5-6 brands) than the total number of choices 

available in the market. As a result, small changes in individuals’ consideration sets (either size or 

choices) may significantly transform the overall market landscape and reshape the competition relations 

in an existing market. Therefore, understanding customers’ decision-making in consideration poses new 

opportunities to optimize product configurations, address customer needs, establish competitive design 

strategies, and make strategic enterprise moves such as branding and positioning. 

Despite a variety of studies on consideration set, few studies focus on the underlying process of 

generating customer consideration sets. The connection between the formation of consideration sets and 

the driving factors associated with both customer and product attributes is not well understood. We 

know little about how the inherent market structure, including both the interdependence among existing 

products and association among customers, would affect the consideration decisions. To address this 

research gap, we develop a network-based approach to quantitatively understand customer’s 

consideration behaviors through modeling product co-consideration relations. As shown in Figure 1, the 

key idea of the proposed network approach is to transform customer consideration sets into a product 

association network in which nodes represent products and links represent the co-consideration between 

two products. As a result, the problem of understanding customer consideration becomes the prediction 

of certain network structures in such an association network using product attributes and customer 

demographics as well as similarity networks derived from these attributes. It is worth noting that our 

approach is different from the agent-based models in which individual choice behavioral rules are 

hypothesized, e.g., (Eliaz and Spiegler, 2011). Instead, our approach leverages the observed data to drive 

the establishment of co-consideration models and analysis. 

 

Figure 1. The research approach and research focus 

Network analysis has many benefits, for example, in the study of relational patterns, effective network 

visualization of associations, and modeling social interactions (Robins et al., 2007b) and cross-level 

interactions (Wang et al., 2015; Wang et al., 2013). Our recent work (Wang et al., 2016b) developed a 

network-based analysis approach to forecasting the impact of technological changes on market 

competitions using the multiple regression quadratic assignment procedure (MRQAP). This study builds 

upon our previous efforts in modeling the underlying relations between product/customer attributes and 

Survey data 

about customers’ 

consideration set

Products’ co-

consideration 

network

Network 

modeling

Simulated co-

consideration 

network

Model calibration 

and parameters 

estimation
1. MRQAP

2. ERGM

Model comparison 

and evaluation

Network construction 

using survey data
Network effect attributes 

formulation and selection

318



ICED17 

customers’ considerations. Specifically, we investigate the performance of a new modeling technique 

based on the exponential random graph model (ERGM) (Robins et al., 2007a), which takes both products 

interdependence and customers’ associations into consideration. Although MRQAP is very convenient 

to test the association between networks, ERGMs better handle attribute variables, interdependent 

relations, and skewness in the distribution of network observations (Shumate and Palazzolo, 2010). The 

research objective is to compare the ERGM with the MRQAP model and to quantitatively evaluate 

how the inclusion of product interdependence would improve the model fit thus better predict the co-

consideration. 

The paper is structured as follows. Section 2 presents the research problem and introduces the method 

of constructing a product co-consideration network. We also briefly give the technical background of 

the MRQAP model and ERGM in this section. Section 3 describes the vehicle case study and the data 

source. Section 4 presents the model implementation and estimation results. We also present how the 

attribute-related network structures are configured and used to represent customers’ associations and 

product interdependence. To evaluate the performance of each model, we use the estimated model 

parameters to regenerate co-consideration networks, compare the simulated networks with the real 

network, and assess the goodness-of-fit at both network level and link level. Finally, Section 5 presents 

the closing comments.  

2 NETWORK CONSTRUCTION AND INTRODUCTION TO NETWORK 

MODELS 

2.1 Network construction 

The product co-consideration network is constructed using data from customers’ consideration sets. The 

presence of a link (co-consideration) between two nodes (products) are determined by an association 

metric, called lift value. The lift value between products 𝑖 and 𝑗 is calculated based on Equation (1). 

Similar to pointwise mutual information (PMI), lift measures the likelihood of the co-consideration of 

two products given their individual frequencies of consideration. 

𝑙𝑖𝑓𝑡(𝑖, 𝑗) =
𝑃𝑟(𝑖,𝑗)

𝑃𝑟(𝑖)∙𝑃𝑟(𝑗)
 (1) 

where 𝑃𝑟⁡(𝑖, 𝑗) is the probability of a pair of products i and j are co-considered by customers among all 

possibilities, calculated based on the collected consideration data; and 𝑃𝑟⁡(𝑖)  is the probability of 

individual product i being considered. The 𝑙𝑖𝑓𝑡  value indicates how likely two products are co-

considered by all customers at the aggregate level, normalized by the product popularity in the market. 

Consideration probability is different from market share that is directly determined by the total 

purchases. With the 𝑙𝑖𝑓𝑡 value, an undirected co-consideration network is constructed in a binary setting 

with the following rule:  

𝐸𝑖𝑗 = {
1,⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑙𝑖𝑓𝑡(𝑖, 𝑗) ≥ 𝑐𝑢𝑡𝑜𝑓𝑓
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

where cutoff is a subjective threshold to determine the presence of a link 𝐸𝑖𝑗 between two nodes 𝑖 and 𝑗. 

Statistically, a 𝑙𝑖𝑓𝑡 value equals 1 indicates that two products are completely independent (Wang et al., 

2016b); a lift value greater than 1 indicates the two vehicles are co-considered more likely than expected 

by chance, and vice versa. Based on the application context, research interest and model requirement, 

different 𝑙𝑖𝑓𝑡  values greater than 1  can be selected. Equations (1) and (2) suggest that the network 

adjacency matrix is symmetric and binary. 

2.2 Research question in the network context 

Once a co-consideration network is constructed, the likelihood of customers considering two products 

can be formulated as the probability of a co-consideration link. That means we are interested in 

understanding what factors (e.g., the product attributes and customer demographics) drive the formation 

of a link between a pair of nodes, and how significantly each factor plays a role in the link formation 

process. The research question in the network context is, therefore, how to predict whether a co-

consideration link exists given the available data of an observed network, product profiles, and customer 

information. 
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Figure 2. Two assumptions on the decision-making process underlying the co-consideration 
network 

We posit two decision-making scenarios underlying the co-consideration relations. The first scenario 

(Figure 2 on the left) assumes that customers evaluate each pair of products independently. Even for 

multiple alternatives in a consideration set, it treats the comparison of each two of these alternatives 

independent of other pair-wise comparisons. The second scenario takes a more generic interdependence 

assumption, and therefore the formation of a co-consideration link may be due to the existing relations 

among the products. For example, in the right subfigure of Figure 2, the likelihood of a co-consideration 

link between products A and B may be affected by the fact that they are both co-considered with product 

C. The MRQAP model takes the simple independence assumption, while the ERGM assumes that all 

co-consideration relations sharing one node are interdependent. By evaluating the goodness of fit of two 

models, we examine whether the ERGM provides a more accurate understanding of the factors driving 

product consideration. The following subsection introduces the technical details of the two models. 

2.3 Introduction to network models 

2.3.1 Multiple regression quadratic assignment procedure (MRQAP) 

The MRQAP model is analogous to the standard logistic regression element-wise on network matrices, 

where the model is given by: 

𝑃𝑟⁡(𝑌𝑖𝑗 = 1) =
𝑒𝑥𝑝(𝜷𝑿(𝒏))

1+𝑒𝑥𝑝(𝜷𝑿(𝒏))
=

𝑒𝑥𝑝(𝛽0+𝛽1𝑋𝑖𝑗
(1)

+⋯+𝛽𝑛𝑋𝑖𝑗
(𝑛)

)

1+𝑒𝑥𝑝(𝛽0+𝛽1𝑋𝑖𝑗
(1)

+⋯+𝛽𝑛𝑋𝑖𝑗
(𝑛)

)
 (3) 

The response 𝑌𝑖𝑗  is the binary links 𝐸𝑖𝑗  between nodes 𝑖  and 𝑗  defined in Equation (2). The node 

(product) attributes are vectorized as effect network 𝐗(𝑛) = (𝑥𝑖𝑗
(1), … , 𝑥𝑖𝑗

(𝑛)) , each measures the 

associations between pairs of nodes based on various arithmetic operations of attributes (see details in 

(Wang et al., 2016b)). The unique aspect of MRQAP is to use simple networks 𝑿 (created using attribute 

data) to predict the structure of the observed complex decision network composed of co-consideration 

links. The coefficients 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑛) in a MRQAP model indicate the importance of individual 

effect networks in forming a co-consideration relation. MRQAP permutes the rows and columns of the 

network matrix many times to generates a random null model, which is used to estimate the unbiased 

standard errors and pseudo p-values. Therefore, MRQAP is more accurate than the traditional regression 

model in the network context. Note that in this model, the probability of each link is evaluated 

independently. 

2.3.2 Exponential random graph model 

The ERGM was first introduced by (Frank and Strauss, 1986; Wasserman and Pattison, 1996) and is 

well known for its capability in modeling the interdependence among links in social networks. The 

emergence of a link in a network is often related to other links. For example, two people who have a 

common friend are very likely to be friends with each other too, and therefore the three friendship 

relations form a triangle structure. Network configurations capture local network structures, including 

edge, stars, triangles, cycles, etc., represent interdependence between network links. Then, the ERGM 

interprets the global network structure as a collective result of various local network configurations. The 

key logic behind ERGM is that it considers an observed network, 𝒚, as one specific realization from a 

set of possible random networks, 𝒀, following the distribution in Equation (4) (Robins et al., 2007a). 

Product A Product B Product A Product B

Product C

Product D

Independence Assumption Interdependence Assumption
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𝑃𝑟(𝒀 = 𝒚) =
exp(𝜽′𝒈(𝒚))

𝜅(𝜽,𝒚)
 (4) 

where 𝜽 is a vector of model parameters, 𝒈(𝒚) is a vector of the network statistics, and 𝜅(𝜽, 𝒚) =

∑ exp(𝜃′𝑔(𝑧))𝑧∈𝑦  is a normalizing quantity to ensure Equation (4) is a proper probability distribution. 

Equation (4) suggests that the probability of observing any particular network is proportional to the 

exponent of a weighted combination of network characteristics: one statistic 𝒈(𝒚) is more likely to 

occur if the corresponding⁡𝜽 is positive. Note that in ERGM, the network itself is a random variable and 

the probability is evaluated on the entire network instead of a link. In brief, the advantages of using 

ERGM in the product co-consideration context have three aspects: 1) interdependence, 2) richness of 

explanatory variables, and 3) capability of characterizing both local and global network structures.  

2.3.3 Effect networks and network configurations 

The explanatory effect networks allow the modeling of two types of effects: the attribute-based main 

effect and the homophily effect (Mcpherson et al., 2001; Wang et al., 2016b). The attribute-based main 

effect tests whether products with a specific attribute is more likely to have consideration links than 

products without the attribute. The homophily effect represents the tendency of entities to associate and 

bond with similar others. In a product co-consideration network, the homophily effect tests whether two 

products with similar attributes tend to have a co-consideration link. A detailed description of the effect 

networks is presented in the Table 1 of (Wang et al., 2016b). The development of the effect network 

supports the study of embedded product competition beyond the understanding of customers’ behaviors. 

In this paper, we also follow the method presented in (Wang et al., 2016a) to develop two distance 

networks – the customer demographic distance and perceived product characteristics distance – to 

capture the effect of customers’ associations. The inclusion of customer associations through these 

distance networks is a unique feature of our approach.  

Different from MRQAP that can only take effect networks, the ERGM also supports the modeling of 

product interdependence regarding network configurations. In this paper, we are particularly interested 

in two network configurations, the star-type interdependence and edgewise shared partner 

interdependence (Robins et al., 2007b), as shown in Figure 3. The alternating k-start indicates that the 

probability of two products A and B being co-considered is conditional on the number of existing co-

consideration relations between product 𝐴 and other products. The edgewise shared partner accounts for 

the dependent effect arising from the shared event. In co-consideration network, the inclusion of this 

effect helps answer the question: if two products are co-considered with the same product, are they more 

likely to have a second co-considered product in common, and a third one and so on? 

 

Figure 3. Two assumptions on the decision-making process underlying the co-consideration 
network 

3 CASE STUDY – MODELING VEHICLE CO-CONSIDERATION NETWORK 

3.1 Application context and data source 

The application in this study is about vehicle consideration and purchase where customers make 

purchase decisions on a car model (e.g., Ford Fusion vs. Honda Accord), according to their preferences 

to various vehicle attributes (e.g., make, price and engine size) and their demographics (e.g., income, 

age, family size, etc.). The dataset used is a 2013 survey data on new car buyers in China auto market. 

The dataset consists of about 50k new car buyers’ responses to about 400 unique vehicle models. The 

survey has questions covering a variety of topics, including respondent demographics, vehicle attributes, 

and customers’ perceived vehicle characteristics (e.g., youthful, sophisticated, and business-oriented). 

The respondents were also asked to list the car they purchased, the main alternative car they considered, 

and the second considered alternative before making the final purchase. These responses are used to 

Alternating k-star

…

…

Edgewise shared partner
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derive the co-consideration network being analyzed in this study. The vehicle attributes reported in the 

survey and verified by vehicle catalog database. 

3.2 Vehicle co-consideration network 

Following the method introduced in Section 2.1, we construct the vehicle co-consideration network with 

cutoff = 5. This value is determined based on the convergent performance of the ERGM. Smaller cutoff 

results in denser network (the network has 6449 links if cutoff = 1) that makes the computation of ERGM 

parameters hard to converge. With cutoff = 5, we obtained an unweighted network with 389 nodes and 

2431 links. Table 1 lists some network metrics which may have different implications for the vehicle 

market. For example, the average degree measures the average number of co-considered vehicles each 

vehicle has and implies the average intensity of competition in the market. The clustering coefficient 

(CC) metrics, on the other hand, measures the cohesion or segmentation of the vehicle market (Wang et 

al., 2016b). The average local CC and the global CC at values of 0.26 and 0.28 indicate strong cohesion 

embedded in the network, and vehicle models are frequently involved in multi-way co-consideration in 

the market. The descriptive network analysis facilitates our understanding of the market and provides 

guidelines on the selection of network configurations in ERGM. 

Table 1. Representative network metrics of the generated co-consideration network  

Number of 

nodes 

Number of 

links 

Average 

degree 

Average path 

length 

Average local 

cluster 

coefficient 

Global cluster 

coefficient 

389 2431 12.5 3.34 0.26 0.28 

3.3 Model implementation 

We create 25 effect networks, including difference and sum networks of price and fuel consumption, 

match networks of vehicle origin and turbo features, etc., and use information gain analysis to select 11 

important effect networks to predict co-consideration links. The log transformation of some continuous 

variables is employed to offset the effect of large differences in certain car attributes. Besides, the ERGM 

includes three additional variables associated with network configurations. The edge variable is a 

network configuration controlling the number of links to ensure the estimated networks have the same 

density as the observed one. 

Table 3 shows the estimated coefficients and corresponding odds ratios of the MRQAP and ERGM 

models. According to the ERGM, that most vehicle attributes, except the power difference and vehicle’s 

import status, are statistically significant at the level of significance 0.01 and therefore have important 

roles in vehicle co-consideration. For instance, two vehicles with smaller differences in price and fuel 

consumption are more likely to be co-considered. If the price of one car model is twice of the price of 

another car, their odds of co-consideration is only 1.4% of the odds of two cars with the same price. 

Similarly, one mile per gallon difference in fuel consumption leads to 26.1% of the odds of co-

consideration compared to the cars with the same fuel consumption. Similarly, for the matching of 

vehicle attributes, two vehicles in the same market segment are 1.804 times more likely to be co-

considered than the ones in different segments, and two vehicles manufactured in the same county origin 

are 1.782 times more likely to be co-considered than the ones with different origins. The negative 

coefficient for the distance of customers’ demographics shows that if the two vehicles targetted to 

customers with different demographics are less likely to be co-considered. In summary, the results show 

that customers are more likely to consider cars with similar features, such as price, fuel consumption, 

market segment, origin, and targeted demographics.  

The results of the MRQAP model are consistent with the ERGM and have the exact sign and similar 

magnitude of the estimated parameters. However, the MRQAP has much bigger standard errors and 

tends to over-estimate the effects. The comparison of the MRQAP model and the ERGM shows that 

ERGM can take the product interdependence into account as network configurations while MRQAP 

does not have such a capability. As shown in Table 2, the coefficient of the shared partner distribution 

is 0.681, with p-values less than 0.001. This indicates that two vehicles co-considered with the same set 

of vehicles are more likely to be co-considered. It implies that a customer’s consideration decision is 

also influenced by how the alternatives in his/her consideration set correlate (e.g., co-considered) with 

the products out of his/her entire consideration set. Such an observation is also evident in the 

performance improvement of ERGM (BIC=13997) as opposed to that of the MRQAP (BIC=15949). 
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Besides the BIC measure of model performance, in Section 4, we perform a systematic model 

comparison study and evaluate how well the observed vehicle co-consideration network would be 

recovered based on the two models. 

Table 2. Estimated coefficients and odds ratios of the MRQAP model and ERGM 

 MRQAP Model ERGM 

Input variables Est. coef. Odds 
Est. 

coef. 
Odds 

Intercept -3.01* 0.05*   

Effect Networks of Vehicle Attributes 

Difference network of price w/ log transformation -10.80* 2.05e-5* -4.27* 1.4e-2* 

Sum network of price w/ log transformation 1.67 5.32 0.60* 1.82* 

Difference network of power w/ log transformation 1.30 3.67 0.56 1.76 

Sum network of power w/ log transformation -1.62 0.20 -0.88* 0.42* 

Difference network of fuel consumption  -3.22* 0.04* -1.34* 0.26* 

Sum network of fuel consumption 2.77* 15.93* 1.32* 3.76* 

Match network of a vehicle’s market segment 1.25* 3.50* 0.59* 1.80* 

Match network of a vehicle’s origin 1.35* 3.85* 0.59* 1.78* 

Match network of a vehicle’s import status -0.07 0.93 -0.06 0.94 

Effect Networks of Customer Association  

Distance network of customers’ perceived char. -0.25 0.78 -0.19 0.83 

Distance network of customers’ demographics -0.59 0.55 -0.37* 0.69* 

Network Configurations of Product Interdependence 

edge N/A N/A -7.79* 0.4e-3* 

Geometrically weighted degree N/A N/A 2.32* 10.15* 

Geometrically weighted edgewise shared partner N/A N/A 0.68* 1.98* 

Model performance 

Null deviance 104618 

Bayesian Information Criterion (BIC) 15949 13997 

* indicates the estimated parameter is significantly different from 0 at the level of significance of 0.

01  

4 MODEL COMPARISON AND EVALUATION 

To further compare the results of MRQAP and ERGM models, the goodness-of-fit (GOF) analysis is 

performed to test their predictive capability. Using the MRQAP and ERGM models in Equations (3) 

and (4) and estimated parameters in Table 2, we test whether the predicted probabilities of co-

consideration between pairs of vehicles match with the real network constructed based on the 2013 

NSCS data. The links with predicted probabilities higher than a threshold (e.g. 0.5) are accepted as 

predicted co-consideration relations between two vehicles. We compare the predicted network with the 

real network for each modeling technique at both the network level and the link level. The network level 

evaluation used the spectral goodness-of-fit (SGOF) metric (Shore and Lubin, 2015); the link level uses 

various accuracy measurements, such as precision, recall, and F scores (see Section 4.2 for more details).   

4.1 Network-level comparison 

The calculation SGOF follows Equation (5). 

𝑆𝐺𝑂𝐹 = 1 −
𝐸𝑆̅𝐷𝑜𝑏𝑠,𝑓𝑖𝑡𝑡𝑒𝑑

𝐸�̅�𝐷𝑜𝑏𝑠,𝑛𝑢𝑙𝑙
  (5) 

where 𝐸𝑆̅𝐷𝑜𝑏𝑠,𝑓𝑖𝑡𝑡𝑒𝑑 is the mean Euclidean spectral distance under the fitted model while 𝐸𝑆̅𝐷𝑜𝑏𝑠,𝑛𝑢𝑙𝑙 

is the mean Euclidean spectral distance under the null model, i.e., the ER random model. Hence SGOF 

measures the amount of observed structure explained by a fitted model, expressed as a percent 

improvement over a null model. The calculation of Euclidean spectral distance takes the entire network 

adjacency matrix as an input, thereby the evaluation is performed at network level. SGOF is bounded 

above by 1, when the fitted model exactly describes the data. SGOF of zero means no improvement over 
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the null model. The SGOF metric provides an overall comparison of different models, and one metric 

that especially useful when a modeler is not clear about which network structural statistics are important 

in explaining the observed network. For example, in our co-consideration case, it is hard to tell which 

network metrics, such as the average path length or the average CC, are more important in understanding 

the market structure. Under this circumstance, the SGOF could be a less risky substitute. Table 3 lists 

the SGOF results of both MRQAP model and the ERGM. The results based on 1000 predicted networks 

from each of the two models include the mean, 5th, and 95th percentile of SGOF and show that the ERGM 

outperforms the MRQAP model, and it is statistically significant. 

Table 3. Spectral goodness-of-fit results of the MRQAP model and ERGM 

 MRQAP model ERGM 

Mean SGOF (5th percentile, 95th percentile) 0.35 (0.28, 0.42) 0.69 (0.60, 0.76) 

4.2 Link-level comparison 

In addition to the network-level comparison, the predicted networks are also evaluated at the link level. 

We define a pair of vehicles with a co-consideration relation as positive, whereas the ones without links 

as negative. Therefore, the “true positive” (TP) means the number of links predicted as positive and 

observed as positive in the real network; the “false positive” (FP) means the number of links predicted 

as positive but observed as negative. Similarly, the “true negative” (TN) means the number of links 

predicted as negative and observed as negative; the “false negative” (FN) means the number of links 

predicted as negative but observed as positive. Taking 0.5 as the threshold of predicted probability, we 

calculate various metrics (shown in Table 4) to evaluate the performance of prediction for both MRQAP 

and ERGM. 

Table 4. Results of various metrics for link-level comparison (predicted links based on 
threshold at 0.5) 

Metrics MRQAP model ERGM 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 0.641 0.546 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 0.0448 0.316 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁) 0.968 0.969 

𝐹𝛽 =
(1 + 𝛽2)×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

𝐹0.5 = 0.21; 𝐹1 =
0.084; 𝐹2 = ⁡0.055 

𝐹0.5 = 0.87; 𝐹1 =
0.40; 𝐹2 = ⁡0.35 

 

Almost all performance metrics suggest that ERGM outperforms the MRQAP model. In particular, the 

recall of ERGM is significantly higher than that of the MRQAP model. The recall in our application is 

important because it measures the percentage of correctly predicted co-consideration relations among 

all 2431 observed co-consideration links. The MRQAP model is only able to predict about 4.5% of co-

consideration; whereas the recall of the ERGM can reach 31.6%. These results imply that the inclusion 

of product interdependence in ERGM indeed improves the model fit and helps better explain the 

observed product co-consideration relations. The only metric of which the MRQAP has a larger value 

is the “precision.” This is because at the threshold of probability equal to 0.5, the MRQAP only predicted 

170 links as positive in total, out of which 109 links are correctly predicted. The small denominator of 

the precision formula (TP+FP) tends to produce a bigger precision. So, different thresholds of the 

predicted probability will affect the value of precision and recall. To get a comprehensive understanding 

of the recall and precision performance, we plot the precision-recall curve (Powers, 2011). The model 

that has a larger area under the curve performs better (Saito and Rehmsmeier, 2015). Figure 4 clearly 

shows that while both network models perform much better than the ER random network model, the 

ERGM overall outperforms the MRQAP model in the full spectrum of the threshold of probability.  
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Figure 4. The precision-recall curve of the MRQAP model and ERGM with random network 
benchmarked 

In summary, the comparative study performed at both the network level and the link level validates our 

hypothesis that the product interdependence plays a significant role in product co-consideration 

relations, and hence the customers’ consideration behavior. The proposed ERGM technique is capable 

of modeling such interdependence and quantitatively capture the importance of various interdependence 

settings in forming a co-consideration relation between two products.  Obtaining an analytical model in 

this application context could boost many future explorations including the what-if scenario analysis 

that aims to forecast market responses under different scenarios of existing product attributes, as what 

we have demonstrated in (Wang et al., 2016b). A better model enhances the predictive capability and is 

expected to make a more accurate projection of the future market trends, and aid the prioritization of 

product features in satisfying customers’ needs and supporting engineering design and product 

development. 

5 CLOSING COMMENTS 

The proposed network approach and the evaluation methods provide a rigorous analytical framework to 

study the customer’s co-consideration decisions. The approach uses network as an abstraction of system 

structures, thus is domain-independent. For example, it can be applied to non-engineering fields, such 

as social networks, to study the effect of associations (e.g., friendship) and interdependences (e.g., two 

friends of a friend are also friends) among people on the formation of social relations to support better 

business decisions and marketing strategies.  

The insights from this study can be summarized in three aspects. First, the estimated parameters of both 

models imply that customers’ co-considerations are price and fuel economy driven because the effect 

networks based on vehicle price and fuel consumption are the most influential factors in forming a co-

consideration link. Second, the interdependece effect arising from the shared vehicles being co-

considered are found to be statistically significant in affecting the formation of a co-consideration link. 

Third, the model comparison study with goodness-of-fit analysis at both network level and link level 

demonstrates that the consideration of product interdependence using the ERGM approach helps 

improve the model fit.  

At the end, we suggest several promising areas for future research. First, the model can be further tested 

to forecast products’ relations and market structures using vehicle attributes data of future years instead 

of the training data. Also, a weighted network modelling framework can be developed to not only predict 

the existence of a link but also to predict the strength of the co-consideration. The weighted network 

models would help discover to what extent customers’ consideration decisions have changed, thereby 

providing more concrete information to guide product design and forecast market responses. 
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