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Understanding customer preferences in consideration decisions is critical to choice modeling in engineering design. While
existing literature has shown that the exogenous effects (e.g., product and customer attributes) are deciding factors in customers’
consideration decisions, it is not clear how the endogenous effects (e.g., the intercompetition among products) would influence
such decisions. This paper presents a network-based approach based on Exponential Random Graph Models to study customers’
consideration behaviors according to engineering design. Our proposed approach is capable of modeling the endogenous effects
among products through various network structures (e.g., stars and triangles) besides the exogenous effects and predicting whether
two products would be conisdered together. To assess the proposed model, we compare it against the dyadic network model that
only considers exogenous effects. Using buyer survey data from the China automarket in 2013 and 2014, we evaluate the goodness
of fit and the predictive power of the two models. The results show that our model has a better fit and predictive accuracy than
the dyadic network model. This underscores the importance of the endogenous effects on customers’ consideration decisions.
The insights gained from this research help explain how endogenous effects interact with exogeous effects in affecting customers’
decision-making.

1. Introduction

Complex networkmodeling and simulation have shown their
power in many engineering applications, such as the wireless
network, sensor network, smart grids, supply chain, trans-
portation systems, and many others. Recent developments
in mathematical modeling techniques and computational
algorithms to study complex networks have also drawn the
attention of engineering design field. Complex networks have
been used in engineering design for the study of relational
patterns, effective network visualization of associations of
products, andmodeling social interactions [1] and cross-level
interactions between customers and products [2, 3]. In the
design of complex products, network analysis has been used

to characterize a product as a network of components that
share technical interfaces or connections. Various network
metrics, such as clustering coefficients and path length, are
used to characterize the product structure and study the cor-
relations between design quality and the product structure.
Based on the network metrics, for example, the centrality,
Sosa et al. [4] defined three measures of modularity as a way
to improve the understanding of product architecture. Recent
work by Sosa et al. [5] found that proactively managing the
use of network structure (such as hubs) may help improve
the quality of complex product designs. Network analysis
has also been applied to studying designers’ network for
understanding organizational behavior [6, 7] and improving
multidisciplinary design efficiency [8]. In this paper, instead
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of focusing on the product or the designer, we leverage com-
plex network modeling and simulation techniques to study
another key stakeholder in product design, the customer.
We aim to leverage complex networks to study customer
preference in support of product design and development.
Particularly, in this paper, we study customers’ consideration
decisions by modeling product coconsideration relations, two
products being concurrently considered in purchase, as a
complex network.

2. Background and Literature Review

Choice modeling is of great interest in engineering design as
it predicts product demand and market share as a function
of engineering design attributes and customer profiles in a
target market [9]. Choice models have been integrated into
design optimization to take account of customer preferences
in supporting engineering design decisions [9–12]. Previous
choice models mostly assume that customers have bounded
rationality and have underlying utilities to rank alternatives
in a consideration set, “a set of product alternatives available
to an individual who will seriously evaluate through com-
parisons before making a final choice” [13]. A key step of
constructing choice models is to determine the consideration
set [14]. As Hauser et al. [15] indicated “if customers do not
consider your product, they can’t choose it.”

From an enterprise perspective, understanding customer
preferences in consideration is important for identifying
crucial product features that customers are willing to pay
for. Existing studies [16, 17] also revealed the consideration
set phenomenon, that is, the size of the consideration set
tends to be much smaller (roughly 5-6 brands) than the
total number of choices available in a market. As a result,
small changes in individuals’ consideration sets (either size
or options) may significantly transform the landscape of
the overall market and reshape the competition relations
in an existing market. Therefore, understanding customers’
preferences in consideration poses new opportunities to
optimize product configurations, address customer needs,
establish competitive design strategies, and make strategic
moves such as branding and positioning.

Managerial actions have been taken to influence cus-
tomers’ consideration decisions directly, for example, by
changing brand accessibility [18] and by controlling usage and
awareness [19]. However, quantitative studies on customers’
consideration decisions are challenging as consideration is an
intermediate construct, not the final choice [15].The decision
context and a large amount of uncertainty alter decision rules.
Existing literature primarily focuses on inferring decision-
rule heuristics [20–22], such as the cognitive simplicity rule
[23], which has been shown to be effective in automobile
and web-based purchasing. There are three approaches to
uncover consideration decision-rule heuristics [15]. The first
approach only utilizes final choices and product features
in the consideration set. It adopts a two-stage consider-
then-choose decision process and infers model parameters
using the Bayesian or maximum likelihood estimation. Typ-
ical methods include Bayesian [24], choice-set explosion
[25–27], and soft constraints [28]. The second approach

measures consideration through designed experiments in
vitro, similar to the choice-based conjoint analysis exercise
[15]. Then the decision rules that best explain the observed
consideration decisions are estimated with Bayesian [29]
andmachine-learning pattern-matching algorithms [30].The
third approach measures decision rules directly through self-
explicated questions [31].

Despite the diversity of research on consideration sets,
few studies have focused on understanding the underly-
ing process of generating customer consideration sets. The
connection between the formation of consideration sets
and the driving factors is not well understood. Particularly,
we know little about how the inherent market structure,
including both the interdependence among existing products
and association among customers, affects the consideration
decisions. To address this research gap, we develop a network-
based approach to model customers’ consideration behaviors
by modeling product coconsideration relations. As shown in
Figure 1, the key idea of the proposed network approach is to
transform customer consideration sets into a product associ-
ation network, in which nodes represent products and links
represent the coconsideration between two products. As a
result, the problem of understanding customer consideration
can be addressed by predicting certain network structures
as a function of association networks formed by product
attributes and customer demographics. It is worth noting
that as the link formation is an aggregation of customers’
decisions, the links (i.e., the coconsideration relations) imply
the competition among products. Therefore, our approach
enables us to study customer preference andmarket structure
in an integrated manner. This is different from the studies
in choice modeling (e.g., the monomial logit choice model
[32]) that focus on establishing models for individuals. It is
also worth noting that our study is different from the agent-
based models which hypothesize certain individual choice-
making rules [33]. Instead, our approach is data-driven,
which leverages the observed data to drive the establishment
of coconsideration models and prediction analysis using the
estimated model parameters.

Recently, network approaches have been also extensively
used in recommender systems [34–38]. Recommender sys-
tems are frequently used to recommend products to cus-
tomers based on what they searched (considered). From
the network representation point of view, our approach is
similar to the bipartite projection approach [39] used in
the recommender systems research. However, the proposed
network approach is distinct from network-based recom-
mender algorithms [37, 38] in two aspects: first, the end
goal is different. The recommender algorithms attempt to
predict future likes and interests by mining data on past user
activities. Common methods include the similarity-based
methods (e.g., the collaborative filtering [38], content-based
analysis [40], and Dirichlet allocation [41]) and the recently
developed hybrid methods [36, 42]. The approach proposed
in this paper relies on the network-based statistical inference
model, which emphasizes deduction and explanation. It aims
to provide an explanatory framework for customers’ consid-
eration behaviors, so that a feedback loop can be created from
customer preference to engineering design. Therefore, the
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Figure 1: The research approach and the research focus.

end goal of this study is to inform product design for larger
market share. In such a context, prediction in this study is
for comparison and validation purposes. Second, the role of
network in the modeling is different. In existing network-
based recommender algorithms, the input takes various
graph-based node-specific attributes (e.g., degree), which are
essentially the exogenous factors, to generate the similarity
metrics. In our approach, the model input can take into
account present network structures (e.g., triangles and loops),
which represents the interdependencies among products, so
that the effect of the inherent competition relations can be
assessed. Such a capability supports better understanding on
the consideration behaviors and could provide additional
insights into the design research that has been primarily
driven by users’ preferences to engineering attributes.

The current work builds upon our previous research
efforts. In our recent study, Fu et al. [43] developed a two-
stage bipartite networkmodeling approach to study customer
preferences in making choices by decoupling the choice-
making process in two stages, the consideration stage and
the choice-making stage. Wang et al. [44] utilized a dyadic
network analysis approach to predict product coconsidera-
tion relations based on exogenous factors, such as product
attributes and customer demographics. By mapping specific
technological advancement (e.g., turbocharged techniques)
to the change of products attributes, the authors also demon-
strated how the model facilitates the forecast of the impact
of technological changes on product coconsideration and
market competition.

In this paper, we take a further step to investigate
the power of complex network modeling in understanding
product coconsideration relations by considering both exoge-
nous factors and endogenous factors, for example, product
interdependence and inherent market competition. The core
technique is based on the Exponential RandomGraphModel
(ERGM) [45]. While dyadic network models are convenient
to predict the associations between products based on exoge-
nous factors, ERGM incorporates endogenous factors as well
as other network interdependencies [46].

The research objective of this study is therefore twofold: (a)
to establish the network-modeling framework that supports
the explanation of customer’s consideration behaviors and
enables the prediction of future market competitions; (b) to
compare the ERGM and dyadic network model to examine
if the inclusion of product interdependence through the

endogenous network effects would better capture the dynam-
ics underlying the formation of product coconsideration rela-
tions. The remainder of the paper has five sections. Section 3
presents the research problem and introduces the method
of constructing a product coconsideration network. We
also briefly provide the technical background of the dyadic
network model and ERGM. Section 4 describes the vehicle
case study and the data source. We present the estimation
results of the dyadic model and ERGM and illustrate how
to use the attribute-related network structures to represent
product interdependence, that is, the endogenous effects. To
evaluate the performance of each model, Section 5 assesses
model fit at both the global network level and the local link
level. Section 6 evaluates the performance of each model in
predicting future coconsideration relations. Finally, Section 7
presents practical implications of the findings and directions
for future research.

3. Network Construction and Introduction to
Network Models

3.1. Network Construction. The product coconsideration net-
work is constructed using data from customers’ consideration
sets. The presence of a link (i.e., coconsideration) between
two nodes (i.e., products) is determined by an association
metric, called lift [47]. Equation (1) defines the lift value
between products 𝑖 and 𝑗. Similar to pointwise mutual
information [48], lift measures the likelihood of the cocon-
sideration of two products given their individual frequencies
of considerations.

lif t (𝑖, 𝑗) = Pr (𝑖, 𝑗)
Pr (𝑖) ⋅ Pr (𝑗) , (1)

where Pr(𝑖, 𝑗) is the probability of a pair of products 𝑖
and 𝑗 being coconsidered by customers among all pos-
sibilities, calculated based on the collected consideration
data; and Pr(𝑖) is the probability of individual product 𝑖
being considered. The lift value indicates how likely two
products are coconsidered by all customers at the aggregate
level, normalized by the product popularity in the entire
market. We use this probability of coconsideration, different
from market share that is directly determined by the total
purchases, to capture the competition between products.
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Figure 2: Two dependence assumptions underlying the coconsideration network.

With the lift value, an undirected coconsideration network
can be constructed using the following binary rule:

𝐸𝑖𝑗 =
{
{
{

1, if lif t (𝑖, 𝑗) ≥ cutoff

0, otherwise,
(2)

where cutoff is the threshold to determine the presence of a
link 𝐸𝑖𝑗 between two nodes 𝑖 and 𝑗. Statistically, the lift value
1 indicates that two products are completely independent
[44]; a lift value greater than 1 indicates the two products
are coconsidered more likely than expected by chance. Based
on the application context, research interest, and model
requirement, different lift values greater than 1 can be used
as the cutoff value. Equations (1) and (2) suggest that the
network adjacency matrix is symmetric and binary. In this
paper, the research is focused on predicting whether two
products would have been coconsidered or not.The extent of
how often they are coconsidered (reflecting the competition
intensity) is not the research focus of this paper. This is
why we made the decision of using binary network instead
of weighted network. Modeling a binary network, while
computationally simpler, is not as rich as the valued network.
Hence, we tested the robustness of our findings by estimating
multiple models based on varying the cutoff values of lift.

3.2. Research Question in the Network Context. Once a
coconsideration network is constructed, the likelihood of
customers considering two products can be formulated as the
probability of a coconsideration link. For prediction purpose,
this leads to the question of what factors (e.g., product
attributes and customer demographics) drive the formation
of a link between a pair of nodes, and how significantly
each factor plays a role in the link formation process. The
aforementioned research question is recast as how to build
a network model to predict whether a coconsideration link
exists given the network structures, product attributes, and
customer profiles.

We posit that there are two decision-making scenarios
underlying the coconsideration relations. The first scenario
(Figure 2(a)) assumes that each pair of products is indepen-
dently evaluated by customers. Even for multiple alternatives

in a consideration set, it treats the comparison of each
two of these alternatives independent of other pairwise
comparisons. The second scenario takes a more general
interdependence assumption, where the formation of one
coconsideration link is not independent of other coconsider-
ation links. For example, in the right diagram of Figure 2, the
likelihood of a coconsideration link between products A and
B may be affected by the fact that they are both coconsidered
with product C. For the two aforementioned networkmodels,
the dyadic network model takes the simple independence
assumption, while the ERGM assumes that all coconsid-
eration relations sharing one node are interdependent. In
this paper, we will examine whether the ERGM provides a
more accurate understanding on the factors driving product
coconsiderations by evaluating the goodness of fit and the
predictability of the two models.

3.3. Introduction to Network Models. The dyadic network
model is analogous to the standard logistic regression
element-wise on network matrices, where the model is given
by the following:

logit [Pr (𝑌𝑖𝑗 = 1)] = 𝛽X(𝑛)

= 𝛽0 + 𝛽1𝑋(1)𝑖𝑗 + ⋅ ⋅ ⋅ + 𝛽𝑛𝑋(𝑛)𝑖𝑗 .
(3)

The response 𝑌𝑖𝑗 is the binary links 𝐸𝑖𝑗 between nodes
𝑖 and 𝑗 defined in (2). The node attributes are converted
to a vector of as dyadic variable, X(𝑛) = (𝑥(1)𝑖𝑗 , . . . , 𝑥(𝑛)𝑖𝑗 ).
Each dyadic variable measures the similarity or difference
between pairs of nodes based on the attributes of nodes
and a specific arithmetic function (see Table 1 for various
dyadic variables). The dyadic network models use the dyadic
variables X to predict the complex structures of the observed
network composed of coconsideration links. The coefficients
𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑛) indicate the importance of individual
dyadic variable in forming a coconsideration relation. Note
that, in this model, the probability of each link is evaluated
independently.

3.3.1. Exponential Random Graph Model. Other than the
dyadic attribute effects, in a network, many links connected
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Table 1: Constructing explanatory dyadic attributes.

Configuration Statistic Dyadic effects
(a) Binary product attributes
Sum variable 𝑋𝑖𝑗 = 𝑥𝑖 + 𝑥𝑗 Attribute baseline effect
Matching variable 𝑋𝑖𝑗 = 𝐼 {𝑥𝑖 = 𝑥𝑗} Homophily effect
(b) Categorical product attributes
Matching variable 𝑋𝑖𝑗 = 𝐼 {𝑥𝑖 = 𝑥𝑗} Homophily effect
(c) Continuous product attributes (standardized)
Sum variable 𝑋𝑖𝑗 = 𝑥𝑖 + 𝑥𝑗 Attribute baseline effect
Difference variable 𝑋𝑖𝑗 =

󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑗
󵄨󵄨󵄨󵄨󵄨 Homophily effect

(d) Non- product related attributes
Distance variable 𝑋𝑖𝑗 =

󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗
󵄩󵄩󵄩󵄩󵄩2 Homophily effect

(i) 𝐼{⋅} represents the indicator function; (ii) | ⋅ | represents the absolute-value norm on the 1-dimension space; (iii) ‖ ⋅ ‖2 represents the 𝐿2-norm on the 𝑛-
dimension Euclidian space.

to the same node have endogenous relations. That means
the emergence of a link is often related to other links. The
ERGM introduced by [49, 50] is well known for its capability
in modeling the interdependence among links in social
networks. For example, two people who have a common
friend are more likely to be friends with each other too,
and therefore the three-person friendship relations form a
triangle structure. Specific network configurations, including
edges, stars, triangles, and cycles, can be used to represent
different types of interdependence. The ERGM interprets
the global network structure as a collective self-organized
emergence of various local network configurations.The logic
underlying ERGM is that it considers an observed network,
y, as one specific realization from a set of possible random
networks, Y, following the distribution in the following
equation [45]:

Pr (Y = y) =
exp (𝜃𝑇g (y))

𝜅 (𝜃) , (4)

where 𝜃 is a vector ofmodel parameters, g(y) is a vector of the
network statistics and attributes, and 𝜅(𝜃) is a normalizing
quantity to ensure (4) is a proper probability distribution.
Equation (4) suggests that the probability of observing
any particular network is proportional to the exponent
of a weighted combination of network characteristics: one
statistic 𝑔(𝑦) is more likely to occur if the corresponding
𝜃 is positive. Note that, in ERGM, the network itself is a
random variable and the probability is evaluated on the
entire network instead of a link as in (3) for dyadic models.
In brief, the advantages of using ERGM in the context of
product coconsideration are threefold: (1) using network
configurations to characterize the endogenous effects among
coconsideration links, (2) providing various dyadic variables
to model different types of exogenous impacts of the product
attributes, and (3) integrating both exogenous attribute effects
and endogenous network effects in a unified framework.

3.3.2. Exogenous Dyadic Variables and Endogenous Network
Effects. The exogenous dyadic variables used both in the
dyadic model and in ERGM allow the modeling of two types

of effects between a pair of nodes with specific variables: the
baseline effects of the attributes and the homophily effects,
that is, the similarity or difference between the attributes of
two nodes [44, 51]. In the context of the product coconsider-
ation network, the baseline effects examine whether products
with a specific attribute are more likely to be coconsidered
than products without that attribute; for example, imported
car models could be more likely to be coconsidered as
compared to domestic car models. The homophily effects
examine whether two products with similar attributes tend to
have a coconsideration link. For example, customers aremore
likely to consider and compare products with similar prices.
The development of dyadic variables supports the study of
inherent product competition beyond the understanding of
customer preferences.

Table 1 summarizes the guidelines of creating dyadic vari-
ables for different types of attributes such as binary, categori-
cal, and continuous. For the product attributes under (a)–(c),
the strength of link 𝑋𝑖𝑗 is determined by the corresponding
attributes 𝑥𝑖 and 𝑥𝑗 associated with the linked products.
Beyond product attributes, we also introduce nonproduct
related attributes (d). For example, customer demographics
can be included in the model to allow the prediction of
the impact of customers’ associations/similarities on prod-
uct coconsideration relations. To create a dyadic variables
related to customers’ attributes, multivariable association
techniques, for example, joint correspondence analysis (JCA)
[52], have been used to compute the similarity of the
customer-related attributes as the distance between two
product points (𝑥𝑖 and 𝑥𝑗) in a metric space. In this paper,
we follow the method presented in [53] to develop two
categories of distance variables, the distance of customer
perceived characteristics and demographic distance. The
customer perceived characteristics are user-proposed tags to
indicate their perceptions of the products, such as youthful,
sophisticated, and business-oriented. Customer demograph-
ics include income and family information of the user
groups of each of the car models. The inclusion of customer
associations through these distance-based dyadic variables is
a unique feature of our network-modeling approach.
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Table 2: Representative network characteristics of the generated coconsideration network.

Number of nodes Number of links Average degree Average path length Average local cluster coefficient
389 2,431 12.5 3.34 0.26

Star (degree)

· · ·

(a)

Triangle (edgewise shared partner)

.

.

.

(b)

Figure 3: Two network configurations of coconsideration relations.

Different from the dyadic models that can only consider
exogenous dyadic effects, the ERGM supports the modeling
of product interdependence with endogenous network effects.
In this paper, we are particularly interested in two network
configurations, the star-type interdependence and triangle-
type interdependence [1]. The star structures (Figure 3(a))
indicate that the probability of one focal product being
coconsidered with others is conditional on the number of
existing coconsideration relations of that focal product (e.g.,
the node on the top in the figure has three coconsideration
links). A positive star effect suggests that a product is more
likely to be coconsidered with another product if it is popular
and already being coconsidered with many others. The
triangle structures (Figure 3(b)) indicate that if two products
are coconsidered with the same set of other products, they
are more likely to be mutually coconsidered. Positive star
effects could include stars with varying number of links (such
as 2, 3, 4, 5, and perhaps many more). Likewise, a link
could have many triangles by linking with varying number
of nodes (1, 2, 3, 4, 5, and perhaps many more). Both star
and triangular effects imply multiway product competition.
To combine the effects of stars with multiple links and
multiple triangles, we use two network configurations, the
geometrically weighted degrees and the geometrically weighted
edgewise shared partner, respectively [54].

4. Case Study: Modeling Vehicle
Coconsideration Network

4.1. Application Context and Data Source. When considering
and purchasing a vehicle, customers make decisions on car
models (e.g., Ford Fusion versus Honda Accord), in part,
based on their preferences for vehicle attributes (e.g., price,
power, and make) and their demographics (e.g., income
and age). To understand the effects of these factors on
vehicles’ coconsideration relations, we use data from a buyer
survey in the 2013 China automarket. The dataset consists
of about 50,000 new car buyers’ responses to approximately
400 unique vehicle models. The survey covered a variety
of questions, including respondent demographics, vehicle
attributes, and customers’ perceived vehicle characteristics.
The respondents reported the car they purchased as well

as the primary and secondary alternatives they considered
before making the final purchase. These responses are used
to construct the vehicle coconsideration network.The vehicle
attributes reported in the survey are verified by vehicle catalog
databases.

4.2. Vehicle Coconsideration Network. Following the method
discussed in Section 3.1, we construct a vehicle coconsider-
ation network with cutoff = 5 which results in a network of
389 nodes and 2,431 binary links. A smaller cutoff generates
a denser network but has similar analytical results. We have
tested our models using cutoff at 1, 3, 5, and 7, respectively,
and no significant changes in the trends of the model results
are observed. Figure 4 shows an example of a partial vehicle
coconsideration network with 11 car models. The node size
is proportional to the degree, and colors indicate the clusters
in which the vehicles are more likely to be coconsidered with
each other.Thenumber on each link is the lift value indicating
the strength of the coconsideration.

Table 2 summarizes some descriptive network charac-
teristics. For example, the average degree suggests that on
average each vehicle has 12.5 coconsidered vehicles and
indicates the overall intensity of competition in the market.
The clustering coefficient (CC), on the other hand, measures
the cohesion or segmentation of the vehicle market [44].
The average local CC at values of 0.26 indicates the strong
cohesion embedded in the network, and vehicle models are
frequently involved in multiway competition in the market.
Thedescriptive network analysis facilitates the understanding
of the automarket and provides guidelines on the selection of
network configurations in ERGM.

4.3. Descriptive Statistics of the Independent Dyadic Variables.
Many exogenous dyadic variables related to vehicle attributes,
such as the difference and sum variables of car prices,
engine power, fuel consumption, and matching variables of
vehicle’s market segments, and make origin, could change
the patterns of coconsideration among the vehicle models.
We use information gain analysis to select 12 most important
dyadic variables among all 22 possible dyadic variables. The
log transformation (base 2) is applied to the price and engine
power variables to offset the effect of large outliers. Table 3
shows the descriptive statistics of the independent variables.

In total, six vehicle attributes, import, price, engine power,
fuel consumption, market segment, and vehicles’ make origin,
are considered in the model. Import is a binary variable
describing whether a car is imported (import = 1, 37.3%) or
domestically produced (import = 0, 62.7%). As suggested
in Table 1 and Section 3.3.2, we construct a sum dyadic
variable of import to account for its baseline effect of whether
each of the paired cars is both imported (value 2 for 13.90%
of the pairs), one imported and one domestic (value 1 for
46.76%), or both domestic (value 0 for 39.34%). If the baseline
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Figure 4: An example of partial vehicle coconsideration network.

Table 3: Descriptive statistics of independent variables for 389 car models in 2013.

Mean (SD) Min Max
Vehicle attributes
Import (binary) 145 import & 244 domestic
Price (log2) 17.61 (1.34) 14.50 20.84
Power (log2) 7.27 (0.58) 5.25 8.76
Fuel consumption (per 100 BHP) 6.61 (1.62) 2.99 18.56
Market segment (categorical) 17 car segments

Make origin (categorical) 13 American, 22 American-Chinese, 98 Chinese, 90 European, 50
European-Chinese, 31 Japanese, 54 Japanese-Chinese, 11 Korean, 20 Korean-Chinese

Vehicle attribute matching and difference
Market segment matching 10.1% pairs of cars coconsidered are in the same segment
Make origin matching 16.5% pairs of cars coonsidered have the same make origin
Price (log2) difference 1.53 (1.12) 0 6.34
Power (log2) difference 0.66 (0.49) 0 3.51
Fuel consumption difference 1.71 (1.52) 0 15.58
Customer association
Distance of customers’ perceived characteristics 0.20 (0.13) 0 1
Distance of customers’ demographics 0.27 (0.16) 0 1

effect of the import attribute is positive, the coefficient of
the sum variable of import should be positive as well, that
is, the higher the sum value of the two car models, the
more likely they are coconsidered together. Similarly, the sum
variables of price (in RMB and transformed using log2) and
power (in brake horsepower BHP and transformed using
log2) describe the baseline effects of price and power on
product coconsideration relations. We construct a variable,

fuel consumption, by dividing liters of gasoline each vehicle
consumed per 100 kilometers over vehicle power (in 100
BHP). As such, the smaller this value is, the more fuel-
efficient the car model is. The difference variables of price,
power, and fuel consumption capture the homophily effects,
which are used to test if the car models with similar attributes
(smaller differences) are more likely to be coconsidered
together.
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Table 4: Estimated coefficients and odds ratios of the dyadic model and ERGM.

Input variables Dyadic Model ERGM
Est. coef. Odds Est. coef. Odds

Network configurations of product interdependence
Edge/Intercept −14.36∗∗ 0.00 −13.71∗∗ 0.00
Star effect (inverse measure) 1.97∗∗ 7.20
Triangle effect 0.70∗∗ 2.01
Baseline effects of vehicle attributes
Import 0.37∗∗ 1.45 0.11∗∗ 1.11
Price (log2) −0.02 0.98 −0.007 1.01
Power (log2) 0.68∗∗ 1.97 0.35∗∗ 1.42
Fuel consumption (per 100 BHP) 0.19∗∗ 1.21 0.12∗∗ 1.13
Homophily effects of vehicle attribute matching and difference
Market segment matching 1.38∗∗ 3.98 0.66∗∗ 1.94
Make origin matching 1.28∗∗ 3.60 0.53∗∗ 1.69
Price difference (log2) −1.75∗∗ 0.17 −0.80∗∗ 0.45
Power difference (log2) 0.08 1.09 0.13 1.14
Fuel consumption difference −0.08∗ 0.92 −0.07∗∗ 0.93
Homophily effects of customer association
Distance of customers’ perceived characteristics. −0.42 0.66 −0.31 0.74
Distance of customers’ demographics −0.57∗∗ 0.56 −0.37∗ 0.69
Model performance
Null deviance 104,618
Bayesian Information Criterion (BIC) 16,005 14,021
Note. ∗𝑝-value < 0.01, ∗∗𝑝-value < 0.001.

The autoindustry is very competitive, so most car models
have very clearly targeted customers and compete in a
specific market segment. Since vehicle’s market segment is
a categorical variable, we use a dyadic matching variable in
the model to investigate whether two cars from the same
segment would affect their coconsideration patterns. The top
3 in all 17 segments in our sample are the C-Class Sedan
(21.6% of car models), B-Class Sedan (11.3%), and Small
Utility (11.1%). Similarly, make origin is also a categorical
variable, and it describes the region where the car brand
originates. Our dataset shows that 90, 31, 11, and 13 carmodels
are made in Europe, Japan, South Korea, and the United
States, respectively, 98 car models are produced in China
with local brands and other local-foreign joint venture brands
come fromEurope (50), Japan (54), SouthKorea (20), and the
United States (22).Thematching variables ofmarket segments
and make origins are used to account for people’s homophily
behavior of comparing cars with the same brand and origin.

4.4. Model Implementation Using ERGM. Table 4 shows the
estimated coefficients and corresponding odds ratios from
fitting the dyadic and ERGM models. Other than the vari-
ables described above, the ERGM includes three additional
variables associated with network configurations. The edge
variable controls the number of links to ensure the estimated
networks have the same density as the observed one. Con-
ceptually, if we have no knowledge about the cars’ attributes
or their coconsideration relations, the edge estimates the
likelihood that two cars will be coconsidered randomly, like

an intercept term in a regression or a “base rate”. The star
effect and triangle effect discussed in Section 3.3.2 are mea-
sured by geometrically weighted degree and the geometrically
weighted edgewise shared partner, respectively. According to
the results of the ERGM, most vehicle attributes, except the
price baseline effect and power difference, are statistically
significant (𝑝 value < 0.001) and therefore play important
roles in vehicle coconsideration. For instance, two vehicles
with smaller differences in price and fuel consumption are
more likely to be coconsidered. If the price of one car model
is twice the price of another car, their odds of coconsideration
are only 45% of the odds of two cars with the same price.
Similarly, one liter per 100 km per 100 BHP difference in fuel
consumption leads to 93% of the odds of coconsideration
compared to the cars with the same fuel consumption. For
the matching of vehicle attributes, two vehicles in the same
market segment are 1.94 timesmore likely to be coconsidered
than the ones in different segments, and two vehicles with the
same make origin are 1.69 times more likely to be coconsid-
ered than the ones with different origins. Finally, the negative
coefficient for the distance of customers’ demographics shows
that customers with different demographics are less likely to
coconsider the same vehicle. In summary, the results show
that customers are more likely to consider cars with similar
perceived features, such as price, fuel consumption, market
segment, and make origin.

As shown in Table 4, the coefficient of the triangle effect
is 0.70 (𝑝 value < 0.001). The positive sign indicates that
two vehicles coconsidered with the same set of vehicles
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are more likely to be coconsidered with each other. It
implies that a form of multiway grouping and comparison
exists in customers’ consideration decisions. That is, product
alternatives in a person’s consideration set are considered as
the same time. On the other hand, the positive coefficient of
the star effect (inversely measured by geometrically weighted
degree) indicates that most of the cars tend to have a similar
number of coconsideration links and there is an absence of a
few cars that are much more likely to be coconsidered than
others. With these endogenous network effects, the ERGM
significantly improves the model fit compared to the dyadic
model as indicated by the improvement of BIC from 16,005
to 14,021. In the next section, we perform a systematic com-
parative analysis to evaluate how well the simulated networks
match the observed vehicle coconsideration network.

5. Model Comparison on Goodness of Fit

A goodness of fit (GOF) analysis is performed to compare
the model fit of dyadic and ERGM models. Using the dyadic
and ERGM models in (3) and (4), respectively, and based
on the estimated parameters in Table 4, we compute the
predicted probabilities of coconsideration between all pairs of
vehicle models. The links with predicted probabilities higher
than a threshold (e.g., 0.5) are considered as links that exist.
Once the simulated networks are obtained from bothmodels,
we compare them against the observed 2013 coconsideration
network at both the network level and the link level. The
network-level evaluation uses the spectral goodness of fit
(SGOF) metric [55], while the link level evaluation uses
various accuracy measurements, such as precision, recall, and
F scores (see Section 5.2 for more details).

5.1. Network-Level Comparison. Spectral goodness of fit
(SGOF) is computed as follows:

SGOF = 1 − ESDobs,fitted

ESDobs,null
, (5)

where ESDobs,fitted is the mean Euclidean spectral distance
for the fitted model while ESDobs,null is the mean Euclidean
spectral distance for the null model, that is, the Erdős–Rényi
(ER) random network in which each link has a fixed prob-
ability of being present or absent. Hence, SGOF measures
the amount of the observed structures explained by a fitted
model, expressed as a percent improvement over a null
model. The Euclidean spectral distance computes the 𝐿2
norm (also called Euclidean norm) of the error between the
observed network and all 𝑘 simulated networks, that is, ‖𝜖𝑘‖,
where error 𝜖 is the absolute difference between the spectra
of the observed network (𝜆̂

obs
) and that of the simulated

network (𝜆̂
sim

), that is, |𝜆̂obs − 𝜆̂sim|. Since the calculation
of the spectra 𝜆̂ requires eigenvalues of the entire network’s
adjacent matrix, this evaluation is performed at the network
level. When the fitted model exactly describes the data,
SGOF reaches its maximum value 1. SGOF of zero means no
improvement over the null model.The SGOFmetric provides
an overall comparison of different models. It is especially

Table 5: Spectral goodness of fit results of the dyadic model and
ERGM.

Dyadic model ERGM
Mean SGOF
(5th percentile,
95th percentile)

0.37 (0.31, 0.43) 0.63 (0.48, 0.76)

useful when a modeler is not clear about which network
structural statistics are important in explaining the observed
network. For example, in our coconsideration network, it
is hard to tell which network metrics, such as the average
path length or the average CC, are more important to the
understanding of market structure. Under this circumstance,
the SGOF provides a simple yet comprehensive evaluation.
Table 5 lists the SGOF scores of both dyadic model and the
ERGM. Based on 1,000 predicted networks from each model,
the results of the mean, 5th, and 95th percentile of SGOF
show that the ERGM significantly outperforms the dyadic
model.

5.2. Link-Level Comparison. In addition to the network-level
comparison, the predicted networks are also evaluated at the
link level. We define a pair of vehicles with a coconsideration
relation as positive, whereas the oneswithout links as negative.
Therefore, the true positive (TP) is the number of links pre-
dicted as positive and also positive in the observed network;
the false positive (FP) is the number of links predicted as
positive but actually negative, that is, wrong predictions of
positives. Similarly, the true negative (TN) is the number of
links predicted as negative and observed as negative; the false
negative (FN) is the number of links predicted as negative but
observed as positive. Taking 0.5 as the threshold of predicted
probability (as it is used in the logistic function), we calculate
the following three metrics to evaluate the performance of
prediction for both dyadic model and ERGM. Precision is
the fraction of true positive predictions among all positive
predictions; recall is the fraction of true positive predictions
over all positive observations; F score is the harmonic mean
of precision and recall (see Table 6 for the formulas). These
metrics are adopted because each of them reflects the capa-
bility of the model from different perspectives. It could be the
case where the model predicts many links (e.g., all links are
predicted in extreme cases andFP is high) so that the precision
is low and the recall is high, while another model could
predict very few links that leads to high FN and therefore high
precision and low recall. Therefore, using either precision or
recall only practically reveals the model performance. Hence
F score is often recommended as a fair measure because it
considers both precision and recall and provides an average
score. In this study, we use all three metrics together to
provide a complete picture of the model performance.

As shown in Table 6, almost all performance metrics sug-
gest that ERGM outperforms the dyadic model. In particular,
the recall of ERGM is significantly higher than that of the
dyadic model. The dyadic model is only able to predict about
4.2% of coconsideration, whereas the recall of the ERGM
reach 31.1%.These results imply that the inclusion of product
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Table 6: Results of various metrics for link-level comparison
(predicted links based on threshold at 0.5).

Metrics Dyadic model ERGM

Precision = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑃) 0.594 0.543

Recall = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑁) 0.042 0.311

𝐹𝛽 =
(1 + 𝛽2) × Precision × Recall
(𝛽2 × Precision + Recall)

𝐹0.5 = 0.162
𝐹1 = 0.078
𝐹2 = 0.051

𝐹0.5 = 0.473
𝐹1 = 0.396
𝐹2 = 0.340
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Figure 5:The precision-recall curve of the dyadicmodel and ERGM
with random network benchmarked.

interdependence in ERGM indeed improves the model fit
and better explains the observed product coconsideration
relations. The only metric for which the dyadic model has a
better value is the precision. At the threshold of probability
equal to 0.5, the dyadic model only predict 170 links as
positive in total, and 101 of them are correct. The small
denominator in the precision formula, that is, TP + FP = 170,
produces a larger precision.

Since different thresholds of the predicted probability
can affect the value of precision and recall, we evaluate the
precision-recall curve [56] by altering the threshold from 0
to 1 to get a more comprehensive understanding. The model
that has a larger area under the curve (AUC) performs better
[57]. When evaluating binary classifiers in an imbalanced
dataset (withmanymore cases of one value for a variable than
the other), which is the case we face, Saito and Rehmsmeier
[57] have demonstrated that the precision-recall curve is more
informative than other threshold curves, such as the receiver
operating characteristic (ROC) curve. Figure 5 shows that, for
any given recall value, the precision of ERGM is strictly higher
than that of the dyadic model and the ERGM outperforms
the dyadic model in the full spectrum of the threshold of

Year 2013 Year 2014
6

7

1 5

4

3
2

1 5

3
2

Figure 6: Illustration of the evolution of the coconsideration
network.

probability (we studied the ROC curve and drew the same
conclusions).

In summary, the comparisons at both the network level
and the link level validate our hypothesis that the product
interdependence, that is, the endogenous effect, plays a
significant role in the formation of product coconsideration
relations and hence the customers’ consideration decisions.
In the next section, we examine the predictive power of the
two models.

6. Model Comparison on Predictability

In this section, we take a further step to compare the two
models in terms of the predictability. We use the models
developed with the 2013 dataset (i.e., the model coefficients
shown in Table 4) to predict the vehicle coconsideration
relations in the 2014 market. From an illustrative example
in Figure 6, we can see that some car models (e.g., node 4)
withdrew from the market in 2014, some new car models
(e.g., node 6 and node 7) were introduced to the market, but
most of the car models (e.g., nodes 1, 2 3, and 5) remained
in the 2014 market. In this paper, we focus on predicting the
future coconsiderations among the overlapping carmodels in
two consecutive years since the new models may introduce
critical features not captured in the previous market, such
as electric cars. In our study, 315 car models were available
in both 2013 and 2014. Therefore, the task here is to predict
whether each pair of cars among these 315 car models will
be coconsidered in 2014 given their new vehicle attributes
in 2014, the new customer demographics, existing market
competition structures (The market competition structure
is captured by the model coefficients of the three network
configurations including the edge, star effect, and triangle
effect discussed in Section 4.4.), and the model coefficients
estimated based on the 2013 data.

Most pairs of cars have the same dyadic status (i.e.,
coconsidered or not) in 2013 and 2014. For example, if
two car models were not coconsidered in 2013, customers
continued to not coconsider these two in 2014. This case
is not of interest because predicting nonexistence is much
easier due to the imbalance nature of the network dataset
and it does not provide new insights. Similarly, the persistent
coconsideration in both 2013 and 2014 is also expected.
Therefore, we focus on changes in two prediction scenarios:
emergence and disappearance of coconsideration links from
2013 to 2014. As shown in Table 7, among 47,724 pairs of
cars that were not coconsidered in 2013, 1,202 pairs were
considered in 2014. The event of changing from not being
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Table 7: Prediction scenarios of interest.

Prediction scenarios Year 2013 Year 2014 Events of interest

Emergence of coconsideration 47,724 pairs of cars not coconsidered 1,202 pairs of new coconsideration Yes
46,522 no change No

Disappearance of coconsideration 1,731 pairs of cars coconsidered 1,087 pairs no longer coconsidered Yes
644 no change No

Table 8: The prediction precision and recall at the threshold of 0.5 in two prediction scenarios.

Prediction
scenarios Model

Number of events
of interest (TP +

FN)

Number of
predictions (TP

+ FP)

Number of
correct

predictions (TP)

Prediction
precision Prediction recall Prediction

𝐹1

(1) Dyadic 1202 36 9 0.250 0.0075 0.015
ERGM 442 111 0.251 0.092 0.135

(2) Dyadic 1087 1654 1076 0.651 0.990 0.785
ERGM 1183 860 0.727 0.791 0.758

coconsidered to being coconsidered indicates the change
of market competition potentially caused by the change of
vehicle attributes such as prices. On the other hand, 1,731
pairs of cars were coconsidered in 2013 among the 315 car
models, but 1,087 pairs were no longer coconsidered in 2014.
We indicate the two cases in the last column of Table 7
where the predictions of 2014 network using 2013 model
are the events of interest. The two “Yes” cases, predicting
emerging coconsideration and disappearing coconsideration
links, both represent the change of coconsideration status
from 2013 to 2014 and are the positive outcomes of model
predictions. Such predictions are more difficult (yet substan-
tively more useful) to attain than the other two “No” cases
of nochange. By testing both the dyadic and ERGM models,
we examine which model had better predictive capability,
assuming that the driving factors and customer preferences
of coconsideration characterized by the model coefficients in
Table 4 are unchanged from 2013 to 2014.

In both prediction scenarios, we input the new values
of vehicle attributes and customer profile attributes from
2014 into the model. When using ERGM, characteristics of
network configurations calculated based on the 2013 data also
served as inputs for prediction. Once the models predict
the probability of each pair of car models, we evaluate the
performance metrics separately in two scenarios: (1) the
precision and recall of predicting emerging coconsideration
among the 47,724 pairs of not coconsidered car models, and
(2) the precision and recall of predicting the disappearance
of coconsideration among 1,731 pairs of cars coconsidered in
2013. The precision and recall of predictions are calculated
similarly to the ones used in Section 5.2. The precision
score is the ratio of the number of correctly predicted links
(such as corrected prediction of emerging coconsideration or
disappeared coconsideration) over the number of predictions
a model makes. The recall score is the ratio of the number
of correctly predicted links over the number of events
of interest (true emerging coconsideration or disappeared
coconsideration in 2014).

Table 8 shows the results of the prediction precision and
recall calculated based on the predicted probability of 0.5
as the threshold in the two scenarios. To predict emerging
coconsideration, the ERGM had much better performance
than the dyadicmodel. Specifically, the dyadicmodel tends to
be overtrained based on vehicle attributes and only predicts a
small set of most likely links, that is, 9 of the 1,202 emerging
new coconsideration relations. On the other hand, the ERGM
predicted 111 (more than ten times) emerging coconsideration
with the same precision. With the probability threshold of
0.5, the ERGM and dyadic model had similar differences
in performance in predicting disappearing coconsideration
links. Figure 7(b) shows that ERGM outperforms the dyadic
model in almost all points of the precision-recall curve. In
fact, the PR curves (Figure 7) show that ERGM at the entire
range of the threshold outperforms the dyadic model in both
prediction scenarios.

Therefore, we conclude that the ERGM has better pre-
dictability than the dyadic model. In addition to the GOF fit-
ness test, the prediction test described above further validates
our hypothesis that taking interdependencies in network
modeling better explains the coconsideration network. In this
particular case study, the analyses performed in both GOF
and prediction analyses indicate that vehicles’ coconsidera-
tion relations are influenced by their existing competitions in
the market.

7. Closing Comments

In this paper, we propose a network-based approach to study
customer preferences in consideration decisions. Specifically,
we apply the lift associationmetric to convert customers’ con-
siderations into a product coconsideration network in which
nodes present products and links represent coconsideration
relations between products.With the created coconsideration
networks, we adopt two network models, the dyadic model
and the ERGM, to predict whether two products would
have a coconsideration relation or not. Using vehicle design
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Figure 7: Prediction PR curves of dyadic model and ERGM in two prediction scenarios.

as a case study, we perform systematic studies to identify
the significant factors influencing customers’ coconsideration
decisions. These factors include vehicle attributes (price,
power, fuel consumption, import, make origin, and market
segment), the similarity of customer demographics, and exist-
ing competition structures (i.e., the interdependence among
coconsideration choices captured by network configurations).
Statistical regressions are performed to obtain the estimated
parameters of both models, and comparative analyses are
performed to evaluate the models’ goodness of fit and
predictive power in the context of vehicle coconsideration
networks. Our results show that the ERGM outperforms the
dyadic model in both GOF tests and the prediction analyses.
This paper makes two contributions relevant to engineering
design: (a) a rigorous network-based analytical framework
to study product coconsideration relations in support of
engineering design decisions, and (b) a systematic evaluation
framework for comparing different network-modeling tech-
niques using GOF and prediction precision and recall.

This study provides three practical insights on coconsid-
eration behavior in China automarket. First, the customers
are price-drivenwhen considering potential carmodels. Both
models suggest significant homophily effects of vehicle prices
and customer demographics in forming coconsideration
links, that is, car models with similar prices and targeting
to similar demographics such as income and family size are
more likely to be considered in the same consideration set.
However, the ERGM reveals much more influential drivers,
such as the homophily effects of car segments and make
origins. These findings confirm the internal clusters in the
automarket. Second, the ERGMmodel suggests that there are

significantly fewer star structures but much more triangles
in the coconsideration network. Beyond the impacts of the
vehicle and customer attributes, ERGM also illustrates that
carmodels that received an equal amount of consideration are
likely to get involved in multiway coconsideration.Third, the
model comparisons based on the GOF and prediction anal-
yses demonstrate that an ERGM approach, which captures
the interdependence of coconsideration, helps improve the
prediction of product coconsiderations.

Finally, having an analytical model in this application
context could boost future explorations including the what
if scenario analysis that aims to forecast market responses
under different settings of existing product attributes, as
demonstrated in [44]. Since ERGM has a better model fit
and predictability, it will helpmakemore accurate projections
on the future market trends and aid the prioritization of
product features in satisfying customers’ needs as well as
support engineering design andproduct development. Future
research should extend the network approach to a longitudi-
nal weighted network-modeling framework, which not only
predicts the existence of a link but also the strength of the
coconsideration between carmodels in subsequent years.The
weighted network models would help discover the nuance in
different customers’ consideration sets and therefore provide
more insights into product design and market forecasting.
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[47] S. Tufféry, “Data Mining and Statistics for Decision Making,”
Data Mining and Statistics for Decision Making, 2011.

[48] K. W. Church and P. Hanks, “Word association norms, mutual
information, and lexicography,” Computational linguistics, vol.
16, no. 1, pp. 22–29, 1990.

[49] O. Frank and D. Strauss, “Markov graphs,” Journal of the
American Statistical Association, vol. 81, no. 395, pp. 832–842,
1986.

[50] S. Wasserman and P. Pattison, “Logit models and logistic
regressions for social networks: I. An introduction to markov
graphs and p,” Psychometrika, vol. 61, no. 3, pp. 401–425, 1996.

[51] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of
a feather: homophily in social networks,” Annual Review of
Sociology, vol. 27, pp. 415–444, 2001.

[52] M. Greenacre, Correspondence analysis in practice, CRC press,
2017.

[53] M. Wang et al., “A Network Approach for Understanding and
Analyzing Product Co-Consideration Relations in Engineering
Design,” in Proceedings of the DESIGN 2016 14th International
Design Conference, 2016.

[54] D. R. Hunter, “Curved exponential family models for social
networks,” Social Networks, vol. 29, no. 2, pp. 216–230, 2007.

[55] J. Shore and B. Lubin, “Spectral goodness of fit for network
models,” Social Networks, vol. 43, pp. 16–27, 2015.

[56] D. M. Powers, Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness and correlation, 2011.

[57] T. Saito and M. Rehmsmeier, “The precision-recall plot is
more informative than the ROC plot when evaluating binary
classifiers on imbalanced datasets,” PLoS ONE, vol. 10, no. 3,
Article ID e0118432, 2015.

[58] Z. Sha et al., “Modeling Product Co-Consideration Relations: A
Comparative Study of Two Network Models,” in Proceedings of
the 21st International Conference onEngineeringDesign, ICED17,
2017.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


