Graph mining assisted semi-supervised learning for fraudulent cash-out detection

Yuan Li Yiheng Sun Noshir Contractor

Aug 2, 2017

NORTHWESTERN UNIVERSITY

Introduction	Method	Experiments and Results	Conclusion and Future work
00000	00000	0000000	000
Outline			
Outilite			

Introduction

Method

Experiments and Results

Conculsion and Future work

Figure: The schematic diagram of fraudulent cash-out.

Introduction	Method	Experiments and Results
00000	00000	00000000
Problem	Setting	

Figure: The schematic diagram of the problem setting.

Approaches for fraud detection

 Supervised learning methods, such as logistic regression, SVM, as well as neural networks

Approaches for fraud detection

 Supervised learning methods, such as logistic regression, SVM, as well as neural networks

Supervised learning hybrid

Approaches for fraud detection

 Supervised learning methods, such as logistic regression, SVM, as well as neural networks

- Supervised learning hybrid
- Semi-supervised learning approach with clustering algorithm

Approaches for fraud detection

 Supervised learning methods, such as logistic regression, SVM, as well as neural networks

- Supervised learning hybrid
- Semi-supervised learning approach with clustering algorithm

Graph mining

Figure: The schematic diagram of modeling fraudulent cash-out detection problem in supervised learning and graph mining hybrid approach.

D.H.Chau etc. ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2010

Introduction	Method	Experiments and	Results	Conclusion and Future work
00000	00000	00000000	_	000
However	when reputation	n score is	not avail	able, we need to

Model edge potential more carefully

> Tune the parameters in Markov random field

However when reputation score is not available, we need to

- Model edge potential more carefully
- Tune the parameters in Markov random field

Our approach:

Introduction	Method	Experiments and Results
00000	00000	0000000

Problem statement

Given:

- An undirected bipartite graph $G = (V_c, V_s, E)$
 - V_c : the set of consumer nodes
 - V_s : the set of merchant nodes
 - E: the edge set corresponding to the transactions among V_c and $V_s.$

Introduction	Method	Experiments and Results
00000	00000	00000000

Problem statement

Given:

- An undirected bipartite graph $G = (V_c, V_s, E)$
 - V_c : the set of consumer nodes
 - V_s : the set of merchant nodes
 - E: the edge set corresponding to the transactions among V_c and V_s .
- ► The binary variable X ∈ {−1, 1} observed over a subset V's of Vs and X = 1 over a subset V'c of Vc, where X = 1 corresponds to fraudulent status.

Introduction	Method	Experiments and Results
00000	00000	0000000

Problem statement

Given:

- An undirected bipartite graph $G = (V_c, V_s, E)$
 - V_c : the set of consumer nodes
 - V_s : the set of merchant nodes
 - E: the edge set corresponding to the transactions among V_c and V_s .
- ► The binary variable X ∈ {-1,1} observed over a subset V'_s of V_s and X = 1 over a subset V'_c of V_c, where X = 1 corresponds to fraudulent status.
- ► The frequency of transactions between i_c ∈ V_c and j_s ∈ V_s and the amount associated with the transactions.

Output:

► P(X_{js} = 1) for js ∈ Vs: probability of a shop involved in fraudulent cash-out transaction.

Introduction	Method	Experiments and Results
00000	00000	0000000
Modeling		

Markov random field:

$$P\{X\} = \frac{1}{Z} \prod_{j_s \in V_s} \phi(X_{j_s}) \prod_{i_c \in V_c} \phi(X_{i_c}) \prod_{i,j \in E} \psi_{i_c j_s}(X_{i_c}, X_{j_s})$$
(1)

Given node potential $\phi(X_{j_s}), \phi(X_{i_c})$ and edge potential $\psi_{i_c j_s}(X_{i_c}, X_{j_s})$, the marginal probability $P(X_{j_s} = 1)$ for vertices j_s can be calculated with Belief Propagation algorithm.

Introduction	Method	Experiments and Results
00000	00000	0000000
Edge Po	otential	

 Transaction between consumers and shops are categorized into different types based on their amount.

Edge potential is modeled as:

$$\psi_{i_c j_s}(X_{i_c}, X_{j_s}) = \frac{1}{1 + e^{\sum_{1}^{p} \alpha_{k X_{i_c} X_{j_s}} m_{k X_{i_c} X_{j_s}}}}$$
(2)

p: number of all possible types of transactions $m_{kX_{i_c}X_{j_s}}$: number of k^{th} type transactions between vertices i_c and j_s $\alpha_{kX_{i_c}X_{j_s}}$: parameter that indicates hemophilic relation among shops and consumers for the k^{th} type of transaction

Introduction	Method	Experiments and Results
00000	00000	0000000
Node	Potential	

Consumer node potential:

$$\phi(i_c \in V_c') = \begin{cases} \beta_c', & \text{for } X_{i_c} = 1 \\ 1 - \beta_c', & \text{for } X_{i_c} = -1 \end{cases}$$
(3a)

$$\phi(i_c \in V_c \setminus V_c^l) = \begin{cases} \beta_c^u, & \text{for } X_{i_c} = 1 \\ 1 - \beta_c^u, & \text{for } X_{i_c} = -1 \end{cases}$$
(4a)

Introduction	Method	Experiments and Results
00000	00000	0000000
Node Pot	ential	

Consumer node potential:

$$\phi(i_c \in V_c') = \begin{cases} \beta_c', & \text{for } X_{i_c} = 1 \\ 1 - \beta_c', & \text{for } X_{i_c} = -1 \end{cases}$$
(3a)

$$\phi(i_c \in V_c \setminus V_c') = \begin{cases} \beta_c^u, & \text{for } X_{i_c} = 1 \\ 1 - \beta_c^u, & \text{for } X_{i_c} = -1 \end{cases}$$
(4a)

- Shop node potential:
 - Labeled shops are used to estimate parameters
 - Both the potentials of unlabeled shops and labeled shops are set to be 0.5.

 (1) Given a set of parameters (α<sub>kX_{ic}X_{js}, β^u_c, β^l_c), by applying BP, the marginal probability of a shop j_s being fraudulent is calculated.
</sub>

 $\begin{array}{c} \textbf{Conclusion and Future work} \\ \text{000} \end{array}$

Parameter Estimation

- ► (1) Given a set of parameters (\$\alpha_{kX_{i_c}X_{j_s}}\$, \$\begin{smallmatrix} g_c & g_c
- (2) The value of a loss function L defined over all labeled shops are calculated.

- ► (1) Given a set of parameters (α_{kX_{ic}X_{js}, β^l_c, β^l_c), by applying BP, the marginal probability of a shop j_s being fraudulent is calculated.}
- (2) The value of a loss function L defined over all labeled shops are calculated.
- (3) Bayesian optimization is used to find the optimal solution to the following optimization problem:

$$(\alpha_{kX_{i_c}X_{j_s}}, \beta_c^u, \beta_c^l) = \operatorname{argmin}_{\alpha_{kX_{i_c}X_{j_s}}, \beta_c^u, \beta_c^l} L(j_s | j_s \in V_s^l)$$
(5)

Introduction	Method	Experiments and Results	Conclusion and Future work
00000	00000	0000000	000
Data			

The performance of the model is evaluated with real-world data from JD Finance.

	Labeled	Unknown	Sum
Consumer	NA	NA	230238
Merchant	7582	193707	201289
Transaction	0	2913471	2913471

Table: Descriptive Statistics of the experiment data

Figure: node degree distribution (log-log)

Introduction	Method	Experiments and	Results
00000	00000	0000000	
Experiment	: Setup		

10 random 4-fold cross validations

10 random 4-fold cross validations

 Multiple initial guesses for the parameters are generated to prevent local optimal solutions.

Performance of our algorithm

Figure: ROC curve for shops. Dark red line is the average ROC curve over 10 experiments and light red lines are ROC curves for each experiment.

Choice of Loss function

Figure: A comparison of different loss function. Dark bars represent the performances of the algorithms after running sufficient number of iterations of Bayesian optimization, and light bars represent the performances of the algorithms after running 30 iterations of Bayesian optimization. The performances are measured in Deviance, TPR and AUC.

Figure: ROC curves of the algorithms under different edge potential models. Red line corresponds to our model. Dark blue and light blue lines correspond to two parsimonious models used in previous studies.

Introduction	Method	Experiments and Results	
00000 00000		00000000	
Node Pote	ential		

Table: impact of the number of labeled nodes when shop potentials are set to be $0.5\,$

	$P_m = 10\%$	$P_m = 25\%$	$P_m = 50\%$	$P_m = 100\%$
$P_{c} = 0\%$	0.9114	0.9033	0.8967	0.9127
$P_{c} = 10\%$	0.9156	0.9036	0.8965	0.9099
$P_{c} = 25\%$	0.9237	0.9116	0.9086	0.9288
$P_{c} = 50\%$	0.9250	0.9123	0.9196	0.9148
$P_{c} = 100\%$	0.9012	0.9008	0.9071	0.9248

Introduction	Method	Experiments and Results
00000	00000	0000000
Node Pote	ntial	

Table: impact of the number of labeled nodes when shop potentials are estimated $% \left({{{\mathbf{x}}_{i}}} \right)$

	$P_m = 10\%$	$P_m = 25\%$	$P_m = 50\%$	$P_m = 100\%$
$P_{c} = 0\%$	0.7960	0.8815	0.9196	0.9306
$P_{c} = 10\%$	0.8055	0.9195	0.9108	0.9206
$P_{c} = 25\%$	0.9163	0.9227	0.9226	0.9271
$P_{c} = 50\%$	0.8362	0.9047	0.9225	0.9305
$P_{c} = 100\%$	0.8570	0.9092	0.9313	0.9348

Introduction	Method	Experiments and Results	Conclusion and Future work
00000	00000	00000000	000
Conclusion			

- Our algorithm is efficient and scalable. We achieve 92% TPR while controlling FPR at 5% level in JD dataset. The algorithm is scalable.
- Our algorithm sheds light on regulation for the fraudulent merchants.
- Our algorithm is robust even if only a small number of nodes are labeled. In real world, ground truth is hard to obtained. Our algorithm provides an attractive way to use the limited observed labels.

Future worl		
00000	00000	0000000
Introduction	Method	Experiments and Results

Conclusion and Future work $\circ \circ \circ$

Including node degree into the model

Allocating the budget of labeling nodes in a network

• Developing an ensemble approach.

Introduction	Method	Experiments and Results
00000	00000	0000000

Conclusion and Future work $\circ \circ \bullet$

Thank you for your attention!