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What is fraudulent cash-out?

Figure: The schematic diagram of fraudulent cash-out.
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Problem Setting

Figure: The schematic diagram of the problem setting.
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Approaches for fraud detection

I Supervised learning methods, such as logistic regression,
SVM, as well as neural networks

I Supervised learning hybrid

I Semi-supervised learning approach with clustering algorithm

I Graph mining
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If we could estimate user reputation, then

Figure: The schematic diagram of modeling fraudulent cash-out detection
problem in supervised learning and graph mining hybrid approach.
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However when reputation score is not available, we need to

I Model edge potential more carefully
I Tune the parameters in Markov random field

Our approach:
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Problem statement

Given:
I An undirected bipartite graph G = (Vc ,Vs ,E )

Vc : the set of consumer nodes
Vs : the set of merchant nodes
E : the edge set corresponding to the transactions among Vc
and Vs .

I The binary variable X ∈ {−1, 1} observed over a subset V l
s of

Vs and X = 1 over a subset V l
c of Vc , where X = 1

corresponds to fraudulent status.
I The frequency of transactions between ic ∈ Vc and js ∈ Vs

and the amount associated with the transactions.

Output:
I P(Xjs = 1) for js ∈ Vs : probability of a shop involved in

fraudulent cash-out transaction.
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Modeling

Markov random field:

P{X} = 1
Z

∏
js∈Vs

φ(Xjs )
∏

ic∈Vc

φ(Xic )
∏

i ,j∈E
ψic js (Xic ,Xjs ) (1)

Given node potential φ(Xjs ), φ(Xic ) and edge potential ψic js (Xic ,Xjs ),
the marginal probability P(Xjs = 1) for vertices js can be calculated
with Belief Propagation algorithm.
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Edge Potential

I Transaction between consumers and shops are categorized
into different types based on their amount.

I Edge potential is modeled as:

ψic js (Xic ,Xjs ) = 1
1 + e

∑p
1 αkXic Xjs

mkXic Xjs
(2)

p: number of all possible types of transactions
mkXic Xjs : number of kth type transactions between vertices ic and js
αkXic Xjs : parameter that indicates hemophilic relation among shops
and consumers for the kth type of transaction
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Node Potential

I Consumer node potential:

φ(ic ∈ V l
c) =

{
βl

c , for Xic = 1 (3a)
1− βl

c , for Xic = −1 (3b)

φ(ic ∈ Vc\V l
c) =

{
βu

c , for Xic = 1 (4a)
1− βu

c , for Xic = −1 (4b)

I Shop node potential:
I Labeled shops are used to estimate parameters

I Both the potentials of unlabeled shops and labeled shops are
set to be 0.5.
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Parameter Estimation

I (1) Given a set of parameters (αkXic Xjs , β
u
c , β

l
c), by applying

BP, the marginal probability of a shop js being fraudulent is
calculated.

I (2) The value of a loss function L defined over all labeled
shops are calculated.

I (3) Bayesian optimization is used to find the optimal solution
to the following optimization problem:

(αkXic Xjs , β
u
c , β

l
c) = argmin

αkXic Xjs
,βu

c ,β
l
c

L(js |js ∈ V l
s ) (5)
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Data

The performance of the model is evaluated with real-world data from
JD Finance.

Table: Descriptive Statistics of the experiment data

Labeled Unknown Sum
Consumer NA NA 230238
Merchant 7582 193707 201289

Transaction 0 2913471 2913471
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Number of nodes vs Number of transactions

Figure: node degree distribution (log-log)
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Experiment Setup

I 10 random 4-fold cross validations

I Multiple initial guesses for the parameters are generated to
prevent local optimal solutions.
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Performance of our algorithm

Figure: ROC curve for shops. Dark red line is the average ROC curve over
10 experiments and light red lines are ROC curves for each experiment.
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Choice of Loss function

Figure: A comparison of different loss function. Dark bars represent the
performances of the algorithms after running sufficient number of
iterations of Bayesian optimization, and light bars represent the
performances of the algorithms after running 30 iterations of Bayesian
optimization. The performances are measured in Deviance, TPR and
AUC.
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Edge Potential

Figure: ROC curves of the algorithms under different edge potential
models. Red line corresponds to our model. Dark blue and light blue
lines correspond to two parsimonious models used in previous studies.
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Node Potential

Table: impact of the number of labeled nodes when shop potentials are
set to be 0.5

Pm = 10% Pm = 25% Pm = 50% Pm = 100%
Pc = 0% 0.9114 0.9033 0.8967 0.9127
Pc = 10% 0.9156 0.9036 0.8965 0.9099
Pc = 25% 0.9237 0.9116 0.9086 0.9288
Pc = 50% 0.9250 0.9123 0.9196 0.9148
Pc = 100% 0.9012 0.9008 0.9071 0.9248
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Node Potential

Table: impact of the number of labeled nodes when shop potentials are
estimated

Pm = 10% Pm = 25% Pm = 50% Pm = 100%
Pc = 0% 0.7960 0.8815 0.9196 0.9306
Pc = 10% 0.8055 0.9195 0.9108 0.9206
Pc = 25% 0.9163 0.9227 0.9226 0.9271
Pc = 50% 0.8362 0.9047 0.9225 0.9305
Pc = 100% 0.8570 0.9092 0.9313 0.9348
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Conclusion

I Our algorithm is efficient and scalable. We achieve 92% TPR
while controlling FPR at 5% level in JD dataset. The
algorithm is scalable.

I Our algorithm sheds light on regulation for the fraudulent
merchants.

I Our algorithm is robust even if only a small number of nodes
are labeled. In real world, ground truth is hard to obtained.
Our algorithm provides an attractive way to use the limited
observed labels.
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Future work

I Including node degree into the model

I Allocating the budget of labeling nodes in a network

I Developing an ensemble approach.

22 / 23



Introduction Method Experiments and Results Conclusion and Future work

Thank you for your attention!
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