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An illustration of the relational event model to analyze group interaction processes 

Introduction 

 A fundamental assumption in the study of groups is that they are constituted by various 

interaction processes that are critical to survival, success, and failure. Indeed, interaction was the 

first feature in DeLamater’s (1974) notable definition of groups as the “interaction between 

individuals, perceptions of other members and the development of shared perceptions, the 

development of affective ties, and the development of interdependence or roles” (p. 39). 

Moreover, classical theoretical works such as Bale’s (1950) interaction process model and 

Schneidel and Crowell’s (1964) spiral model of group development both emphasize the intricate 

dynamics of group interaction processes and how they influence group outcomes. As such, if 

“temporal patterns of interaction are central to the study of groups, then to understand groups 

fully, it is important to have methods for characterizing and testing theories of group interaction” 

(Hewes & Poole, 2012, p. 358). 

As the word process implies, there is a continuous, developmental, and unfolding spirit to 

process, one that deviates from static, cross-sectional, and snapshot approaches. For instance, 

when groups make decisions, manage conflict, or simply communicate with one another, they 

are engaging in series of ongoing events and changes that occur continuously over time 

(Rescher, 1996). As such, to better capture this trend, we follow Marks, Matheiu, and Zaccaro 

(2001) and define group interaction processes as “members’ interdependent acts that convert 

inputs to outcomes through cognitive, verbal, and behavioral activities directed toward 

organizing taskwork to achieve collective goals” (p. 357). That is, when groups act, their 

interdependent acts (i.e., processes) are influenced by a variety of factors brought into the group 

(i.e., input). Typical interaction processes include communication, coordination, and conflict 
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management (Williams & Mahan, 2006). When groups engage in various processes, an output is 

generated, for better or for worse (e.g., performance outcomes, perceptions, affective ties, roles, 

etc.).     

 However, because group process inherently brings time into the equation, this poses a 

dilemma regarding: (1) appropriate ways to measure the nuanced concept; and (2) what methods 

can be used to analyze them. For instance, a large amount of measured group processes are 

arguably not processes, instead better conceptualized as emergent states (Marks et al., 2001), 

better known as attributes or properties of groups that were perhaps themselves influenced by 

various interaction processes. Emergent states are often measured through gauging group 

member’s perceptions via a survey. For instance, when collective efficacy is hypothesized to 

influence group performance (Bandura, 1997), there is an implicit assumption that collective 

efficacy should be conceived of as a process that leads to high group performance, when in fact, 

collective efficacy may simply be an output of various ongoing interactions among group 

members. Thus, when processes are measured as emergent states, researchers neglect the actual 

fine-grained interdependent acts occurring over time that make up the heart of group interaction 

processes. 

 A second problem regarding the study of group interaction processes is method. Most 

methods used to study process are based on variance theory, which simply analyzes the 

relationship between a set of independent and dependent variables (Poole, 2012; Mohr, 1982). 

Such a method, even with longitudinal extensions, may not be sufficiently nuanced enough to 

capture how a series of interdependent interactions produce some sort of outcome. Indeed, 

traditional methods under the guise of variance theory make limiting assumptions about the 

nature of social reality, what Abbott (1988) referred to as general linear reality. General linear 
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reality neglects sequential processes because it assumes “the social world consists of fixed 

entities (the units of analysis) that have attributes (the variables)” and “interact, in causal or 

actual time, to create outcomes, them-selves measurable as attributes of the fixed entities” (p. 

170). 

The purpose of this paper is to describe a newly developed method that can help 

ameliorate the problem of measure and method regarding group interaction processes: relational 

event modeling (REM). REM is a blend of social sequence and network analysis (e.g., Cornwell, 

2015). It addresses the measure problem by producing a set of sufficient statistics that capture 

patterned and interdependent interaction over time, and the method issue by using continual and 

longitudinal inference to model a history of group interactions. The paper is organized as 

follows. First, we present a general relational event framework for analyzing group interactions 

processes. Next, we describe the data used for the tutorial analysis. Finally, we demonstrate best 

practices for using, reporting, and interpreting REM, concluding with some of the limitations 

affecting REM.  

A general relational event framework for group interaction processes 

 At a basic level, a relational event can be defined simply as a “discrete event generated 

by a social actor and directed toward one or more targets” (Butts, 2008, p. 159). For instance, 

when group member A sends a message to group member B, at time T, there is the necessary 

information required for one relational event. Other REMs can take into account more 

information, such as the weight of the interaction to reflect level of influence or importance of 

the events  (Brandes et al., 2009) and different types of receivers (Vu, Pattison, & Robins, 2015).  

 Though still quite young, several studies have implemented REM in various contexts. For 

instance, Welles and colleagues (2014) used it to understand how individuals form friendship ties 



 p. 4 

in Second Life. Lerner and colleagues (2013) used it to analyze political interaction between 

nation-states, testing the old adage that the enemy of my enemy will be friend. And Quintane and 

colleagues (2014) used REM in a comparative analysis between two organizational teams and 

their email patterns. Because one team was high performing and the other low, this allowed to 

others begin an inquiry into whether some relational event patterns might lead to success more so 

than others. 

In all these studies, the sequential aggregation of relational events forms what is called an 

event history. The overall purpose of REM is to model that event history. In traditional terms, the 

dependent variable here is the next relational event. As such, what are the independent variables? 

Or in other words, how and why do relational events happen? Figure 1, drawing from Lusher et 

al.’s (2013) cross-sectional network framework, presents a schema to conceptualize the factors 

that can influence the probability of an event occurring along three factors: (1) past relational 

events, (2) actor attributes, and (3) exogenous contextual factors. 

 Past relational events. Often referred to as endogenous mechanisms (Leenders, 

DeChurch, & Contractor et al., in press; Stadtfeld, 2012), the accumulation and sequencing of 

past relational events can influence the likelihood of the next relational event. For instance, 

inertia describes how the aggregation of past events to an actor will influence future rates of his 

or her behavior. Inertia reflects the degree to which group members’ past contacts tend to be 

their future contacts. Other mechanisms are more sequential in nature. Take for example 

reciprocity, which examines the likelihood of group member B sending a message to A if B had 

recently received a message from A. More complicated sequences can go beyond the dyad too. 

Triadic closure examines a sequence of three members forming a clique-like structure: when 
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group member A sends a message to B, and B sends a message to C, what is the likelihood that 

A will send a message to C? 

 Actor and event attributes. Sometimes the likelihood of a group interaction occurring is 

due to some attribute of either the sender or receiver, or an attribute of the event itself. The effect 

of sending or receiving, for example, represents the most basic type of effect that attributes can 

have on relational events. An extraverted individual might, for instance, send messages at a 

higher rate than somebody who is more introverted.  

However, it is more complicated if the specified sequence involves more than simple 

sending and receiving. Attribute sequences represent instances when a specific sequence 

interacts with a particular attribute of those involved in the process. For instance, consider the 

concept of brokerage roles (Gould & Fernandez, 1989) involving team leaders in groups. In this 

scenario, the team leader can take up different roles depending on the sequences of relational 

events (e.g., coordinator, itinerant broker, gatekeeper, representative, and liaison). For example, 

when a non-leader sends a message to a team leader on the same team and then the said team 

leader relays that message to another team, they are said to play the role of a gatekeeper. Other 

statistics can simply measure the influence of past events contingent on some sort of attribute. 

For instance, reciprocity might be more prevalent within group members who are more 

demographically similar (e.g., homophily) or preferential attachment might be contingent on 

experience (e.g., older group members).  

 Exogenous contextual factors. Exogenous factors refer to characteristics outside the 

relational event history and individual attributes. These measures include the state or character of 

a relation as well as environmental events beyond the scope of the interaction system. As a 
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result, behaviors derived from these factors are not well explained by endogenous mechanisms 

such as previous relational events. 

Relational attributes refer to different kinds of ties individuals might have with one 

another like affinity (e.g., friendship, trust), flow (e.g., other forms of sending messages like 

texting), representational (e.g., endorsements), and semantic (e.g., shared interpretations) ties 

(Shumate et al., 2013). It might be the case for example, that individuals who share a friendship 

tie are more likely to interact in groups than non-friends. Generally, relational attributes capture 

the nature of the dyad itself and provide context for the type and timing of events that occur 

between that pair. 

Environmental factors may refer to more ambiguous concepts that lie outside the system 

of group interaction, such as social context or team cohesiveness. Alternatively, environmental 

factors may encompass more readily measurable entities like the nature of the task, restrictions 

on communication channels, or availability of resources. Any of these elements might have an 

influence on patterns of group communication. For instance, some groups might be embedded in 

environments where there is much more uncertainty (e.g., lack of credible information) or with 

an infrastructure that makes it more difficult to accomplish goals (e.g., lack of information 

technology). Comparative analysis might be one way to estimate the effects of the environment.  

 The next section briefly articulates the statistical logic underlying the relational event 

model. It also deals with the operationalization of some of the above mentioned variables and 

how they can be employed in an actual analysis. We use the framework as an example to model 

relational events in an experimental setting within a multi-team system playing a virtual military-

like simulation.  

Overview of the relational event model 
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 For a more statistical introduction on how exactly to model relational events, we refer the 

reader to Butts (2008), Stadfeldt (2012), and Brandes et al. (2009). A technical introduction is 

included in the online appendix, but we provide a general introduction below. 

For any group process, there is a discrete set of interactions (i.e., relational events) that 

can occur during any given time frame. The frequency of each interaction in this set depends on 

a unique rate of occurrence. Commonplace actions happen more often so they have a higher rate 

of occurrence, whereas unusual events have a low rate. Further, the rate also determines the time 

between interactions – a model containing more common interactions will show less time 

between interactions than a model with more unusual interactions. This rate variation forms the 

basis of event history models (Blossfeld & Rohwer, 1995). In event history models, the rate 

variation is assumed to be the result of certain covariates that are context-specific. For example, 

how long it took for group members to vote in favor of a new bylaw amendment (e.g., an event) 

might be influenced by a variety of factors likes member age, personality, or ideological views. 

Butts (2008) amended this framework to interpersonal actions, giving rise to the relational event 

model. Given the social context, the covariates responsible for the variance in interaction rates 

represent behavioral and cognitive mechanisms that lead individuals to engage in certain events 

more often than others.    

As a process unfolds over time, the likelihood for an action to occur may change. 

Consequently the rate of that event should adjust to reflect the influence of past actions. For 

instance, if two individuals repeatedly communicate with a third party, the propensity for them to 

communicate with one another may increase. In essence, the history creates the context for the 

present. We therefore model the rate as a function of historical information, in addition to other 

individual or relational-level covariates. As the sequence continues to unfold, the rates of events 
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are continuously updated to reflect the new network structure. This allows group researchers to 

“understand how past interactions affect the emergence of future interactions, without assuming 

that they are completely determined by them” (Quintane et al., 2014, p. 533).  Given this general 

modeling scheme, the likelihood of a specific event sequence can be computed as the probability 

of each action, multiplied by the probability of the time between actions, conditional on the 

entire realized history.  

Perhaps the greatest utility of REM lies in the wide range of sufficient statistics that can 

be derived from event sequences. These measures are numerical representations of specific 

interaction patterns, similar to those encoded in ERGM’s or stochastic actor-oriented models 

(Lusher et al., 2013). That is, like how conceptual models are translated into statistical models, 

sufficient statistics are the operationalizations of model parameters like the ones described in 

Figure 1 (i.e., past relational events, actor attributes, and contextual factors). Prior work on 

proportional hazards models provides us with a framework for parameterizing rate functions 

(Cox, 1972); this general methodology is utilized in REMs. Each sufficient statistic maps the 

network information to a real number; this value represents the frequency with which that 

particular interaction sequence occurs. The influence of a particular statistic on the frequency of 

a relational event is represented mathematically by a parameter vector, analogous to a logistic 

regression coefficient. The sign and magnitude of each coefficient determines how influential a 

particular network effect is regarding the generation of relational events across a given pair of 

individuals.  

As such, the REM advances the measure and method of group interaction processes in 

two ways. First, the model is inherently longitudinal and takes into account every time-stamped 

interaction in groups into account. Thus, aggregating interactions into single or multiple time 
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slices (e.g., combining emails with time-stamp information in weekly time slices) or asking 

members whom they communicate with, which has been shown to be not entirely reflective of 

who they actually communicate with (e.g., Corman & Scott, 1994), is no longer necessary. REM 

provides a statistical procedure that treats every minute group interaction as important. And 

second, the sufficient statistics can be interpreted as sequential structural signatures (SSSs) 

(Leenders, DeChurch, & Contractor, in press), providing maximum likelihood estimates for 

different group interaction processes, being able to take into account past relational events, 

individual attributes, and environmental factors. In essence, these estimates capture how different 

groups have similar and dissimilar interaction patterns. Thus, REM has the potential to answer 

several important research questions related to group dynamics, like: 

1. Do some patterns of past interactions influence the probability of future interactions? 

2. What types of individual attributes make it more likely that they will send or receive 

interactions? 

3. What types of exogenous contextual factors influence patterns of group interactions 

(e.g., relationships between group members, nature of the task, information 

uncertainty)? 

Example of REM 

 Data. The data come from a set of 12 MTS (Multi-Team System) experiments collected 

by two of the authors and is further elaborated in Author citation (2014). MTSs are teams of 

teams that must often accomplish team and MTS level goals. Real life examples include 

emergency response systems and diverse military squads. Briefly, the experiment set up a small 

MTS of two teams of two. Each team (i.e., Phantom and Stinger) had a team captain and team 

driver. The military-like scenario was implemented in Virtual Battlespace 2 and requires that 
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each team must make sure a path is safe for an emergency convoy to deliver medical supplies. In 

order to make sure the path is safe, the teams of must accomplish a variety of tasks that require 

communication between teams (some more so than others). These tasks include documenting 

artifacts, diffusing bombs, evading an ambush, collecting intelligence from a secret informant, 

and coordinating a convergence to battle a group of insurgence.  

 For the current example, we employed a chain network reflective of military chains of 

command. In the network, there was a line of communication available from each squad’s 

captain and driver. As such, at any time, the captain and driver from each team can 

communicate. Next, there was a line of communication available to each squad’s captain. That 

is, at any time, by switching channels, the captain from either squad could communicate to the 

other squad’s captain. 

 The relational event data come from recording each interaction using Comm Net Radio 

(CNR), a radio software that each group member used in order to communicate with one another 

during the experiment. CNR records who sent a message whom and for how long (along with 

actual recording of the content). As such, the data can be easily converted into data exploitable 

by REM. A sample data snapshot includes three elements: (1) standardized time of the 

interaction, (2) a sender of the interaction, and (3) a receiver of the interaction (see Table 1). 

 The survey data come from an electronic survey administered immediately following the 

mission. Each MTS conducted two missions. For illustrative purposes, we choose to analyze a 

random MTS’s interaction patterns in the second mission because we can exploit survey 

measures following the first mission and give detail on how to report results from REM. In other 

words, after the first mission, there is a brief history established by the MTS that may influence 

interaction processes in the second mission.  
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 Sequential structural signatures. Table 2 describes the different SSSs used to model the 

group interactions. It describes the definition, visualization, and actual statistic used in the 

analysis. For past relational events, we include inertia and reciprocity. For attribute effects, we 

include sender effects for captains (i.e., are captains more likely to send message?) and the 

propensity for captains to relay messages to the other team (i.e., when a captain receives a 

message, what is the likelihood they will interact with the other team?). Finally, for 

environmental contextual factors, we include a trust network included in a survey after the first 

mission. The question simply asks on a Likert scale (1 – 5) “To what extent did you trust each 

member of the squad?” Thus, a valued trust network was extracted and entered in the model to 

determine if higher trust between team members predicts the probability of sending messages.  

 The SSSs used in this example are by no means exhaustive; various other structures may 

be encoded to capture specific behavioral patterns as needed. A sequential structural signature 

must be finite, affinely independent from other SSS included in the model, and must be a 

mathematical function of at least one type of antecedent as described in the previous section 

(Butts, 2008). For examples of how to operationalize simple structural signatures, refer to Table 

2. 

Reporting and interpreting results 

 Although there are no rule of thumb guidelines on what to report, we recommend at the 

minimum, following previous research using REM, the reporting of (1) pre-modeling descriptive 

statistics,  (2) model adequacy of full and reduced models (i.e., AIC and BIC), (3) significant and 

insignificant estimates, and (4) goodness of fit metrics. Each is discussed below using the current 

example.  
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 Pre-modeling descriptive statistics. Before modeling, it is important to get a glimpse of 

the data in order to get an initial idea of what may be driving the relational event history. 

Because this is more of a qualitative assessment, there are no specific statistics to report and will 

differ depending on the nature of the data (e.g., does it have attributes?), although simple metrics 

on amount of events sent and received by each actor can also be useful. One possible method is 

to aggregate or bin the event data in some way that generates a valued network structure (i.e., 

how many times each actor communicated with one another). From this data frame, various 

network methods of analysis can be explored to find out if there are dyads or cliques that interact 

on an unusually high or low frequency. This can also be seen visually by the weight of each tie 

from group member to group member. Other more dynamic visualizations can include creating 

animations of the event history in order to add some temporal aspects (e.g., ndtv, Bender-deMoll, 

2015). Such an approach would better leverage the granularity of relational event data, relative to 

an aggregation method. 

 Table 3 provides a matrix of the raw number of messages sent and received by each team 

member. The data describes the aggregate total messages from each dyadic and number of 

messages sent and received by each member. In the current example, the Stinger team was more 

active with both members sending more messages (Captain N = 92, Driver N = 80) than both 

members of the Phantom team (Captain N = 75, Driver N = 51). Moreover, dyadic 

communication was much more prevalent within each team rather than cross team as the two 

Captains only exchanged 29 messages together out of the 298 total relational events (9.7%). As 

such, this information gives us some initial information about each team, namely, that the Stinger 

team was more active and that cross-team communication was not nearly as common as intra-

team communication.  
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 Model adequacy. Following REM, there is a need to determine which model provides 

the best fit. Like most modeling strategies, the goal should be a blend of parsimony (i.e., model 

with the fewest parameters) and accuracy (i.e., model that predicts events with the highest 

accuracy). As such, the use of the Akaike information criterion (AIC) and Bayesian information 

criterion (BIC) are suggested to determine which model is more preferable. Moreover, if a 

reduced model is chosen, a comparison with the full model is recommended in order to 

understand the differences between the two.  

As such, if the goal of the researcher is to develop the best predictive model in terms of a 

more inductive and exploratory approach, we recommend forward selection as a strategy for 

relational event model building. Forward selection, as in regression model building, is a bottom 

up approach, entering one variable in the model at a time and then dropping variables when they 

are highly insignificant (e.g., a probability value of above 0.20) and retaining significant ones. 

However, if the goal of the research is to develop the best theoretical model in terms of a more 

deductive approach, we recommend theoretical selection as a strategy for relational event model 

building. In this case, the researcher might investigate common mechanisms that can act as 

control variables (e.g., inertia, reciprocity), develop hypotheses on unique SSSs (e.g., cross-team 

relay) and include other SSSs that may be perceived as alternative explanations (e.g., intra-team 

relay). 

For demonstration purposes, in the current example, we only report the full model 

because removing non-significant parameters only marginally improved the AIC (57.985 for the 

model, and 54.553 dropping the insignificant term) and BIC (80.167 for the full model, 73.038 

dropping the insignificant term). Moreover, for ease of interpretation and the tutorial, we build a 
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rather parsimonious model as an introductory example, including sequences from all three 

factors in Figure 1. 

 Coefficient estimates. Users can interpret maximum likelihood estimates (MLE) as an 

indication of the odds or chance that an interaction (i.e., relational event) will happen given the 

conditions specified in each of the parameters entered. For instance, a MLE of 0.50 on 

reciprocity simply means that if A sends a message to B, then B is 1.64 times more likely to send 

a message back to A. The 1.64 is calculated by taking the exponential function of the MLE 

estimate, which in this case is 0.50 (e0.50 = 1.64). Moreover, the estimates are conditional on all 

other effects imputed in the model. Thus, they need to be interpreted not as independent, but as 

contingent on all other effects. As per traditional inferential statistics, we recommend reporting 

MLEs, standard errors, and probability values. Standardizing MLEs (e.g., z-score) may also be 

useful for comparing multiple models to see if some samples differ on estimates more or less so 

than others. 

 In the current example, there was a blend between positive, negative, and non-significant 

results (see Table 4). For instance, with respect to the influence of past events, using a threshold 

of 0.05, inertia was positive and significant (MLE = 0.027, SE = 0.013), but not reciprocity. This 

suggests, given all other effects in the model, there was a propensity for past contacts to remain 

as future contacts. This is not surprising as the descriptive statistics suggest that communication 

was primarily between each team’s captain and driver within the team. 

 Likewise, the attributes of individuals had some mixed effects on relational event 

patterns. For example, contrary to our initial expectations, after accounting for all other effects, 

captains were less likely than drivers to send messages (MLE = -0.274, SE = 0.125). Moreover, 

cross-team relay, not surprisingly given information from the descriptive statistics, was not 
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significant (MLE = -0.375, SE = 0.336), providing more evidence that communication was 

mostly intra-team related. Finally, for variables external to the communication system, trust was 

a significant predictor of relational events (MLE = 0.232, SE = 0.056). In other words, members 

were more likely to send messages to people whom they trusted.  

 Goodness of fit. The purpose of goodness of fit (GOF) analysis is to determine how well 

the statistical model explains the observed event history, similar to an R2. Again, although there 

is no general rule of thumb, there are several techniques available to assess the overall predictive 

power of the model.  A basic strategy is to compare the final model to a null model, which 

assumes events are predicted random chance or some sort of basic function (e.g., exponential 

function). Similarly to how we would assess a series of generalized linear models, we would 

derive the deviance, or log-likelihood value for both the null model and the fitted model. If the 

parameterized REM performed significantly better relative to the base model, then we should 

observe a statistically significant reduction in deviance. This difference may be tested using a 

Chi-square distribution. We find that the deviance of the null model is 224.46, while the 

deviance for the full model is 45.98 (see Table 5). This difference in deviance values gives us a 

test statistic of 178.47, which follows an approximate Chi-square distribution with five degrees 

of freedom; the corresponding p-value is < 0.001. Thus we may conclude that the full model 

performs significantly better than the null model.  

Alternatively, goodness of fit could be assessed according to the misclassification rate of 

the final model. Using the estimated parameter values and the event history, we may generate a 

most likely event for each step in the sequence. Then, these predicted outcomes can be compared 

to the realized events; the misclassification rate is the proportion of events that were incorrectly 

predicted by our model. While there is no hard and fast threshold for fitting REM’s, the 



 p. 16 

misclassification rate may be used to compare several competing models, as well as indicate how 

accurate extrapolations may be. In the case of our model, the misclassification rate was 73.8%. 

Thus, there were only 78 instances out of 298 in which the most likely event as predicted by the 

fitted model was indeed the realized event.  

Alternatively, the null model assigns equal probability to all possible events; because 

there are six possible dyadic events, the null misclassification rate would be 83.3%. Although, 

this result supports our previous conclusion that the parameterized model is a better fit to the data 

compared to a basic exponential model, it also represents a good example of when the researcher 

might want to explore with additional parameters in order to improve the accuracy of the model.  

Indeed, the framework provided suggests a number of theoretically informed event sequences 

might be useful, including but not limited to preferential attachment (i.e., past relational events), 

other brokerage sequences (e.g., representation), or other types of perceived network states from 

survey data (e.g., expertise). 

When and how to use REM 

 The crux underlying the current illustration is that REM is a promising method to analyze 

group interaction processes. In other words, if researchers are interested in understanding the 

different patterns group members engage in during interaction, then REM is one way to 

empirical tease that out. Indeed, because of the unique trace data structure of REM, the most 

important factor determining when to use REM is the type of data available. Data on fine-grained 

interactions constitutes what is sometimes commonly known as Big Data because of the velocity 

at which interactions are exchanged and collected (Gandomi & Haider, 2015).  

Perhaps more importantly, relational event data is sometimes difficult to collect. 

Nevertheless, the advent of new technologies like social media and crawling software make it a 
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little easier and accessible to collect the type of trace data necessary for REM. Additionally, the 

software used in the current experiment, CNR, is great way to easily collect group interactions in 

real time. 

 To our knowledge, there is only one publically available package to conduct relational 

event dynamics, the relevent package in R (Butts, 2015). The current estimation was carried out 

in MATLAB through our custom estimation (see Appendix I for more detail), but we also 

provide a basic analysis in relevent. The main difference between the current analysis and the 

relevent package is the flexibility in parameter customization because relevent has a set of a 

priori sufficient statistics (though customization is available for those exceptionally skilled at R 

programming). We recommend thinking about the theoretical assumptions underlying the group 

task and structure in order to determine which program is more useful. For instance, if the 

researcher is primarily interested in group structure as a series of conversational norms and 

participation shifts, then relevent would be a good option.  

 In a related note, depending on the nature of the data and goals of the researchers, other 

related models might be appropriate as well. For network evolution, where interactions are best 

modeled when they are put into different panels/waves rather than in timestamps or order from 

interaction to interaction (e.g., Barnett, Jian, & Hammond, 2015), stochastic actor oriented 

modeling (Snijders et al., 2010) may be useful to understand the factors that influence network 

reproduction and evolution. Similarly, if the researcher is interested in life cycles (e.g., Gersick, 

1988) or different group phases (e.g., Moreland & Levine, 1998), than various longitudinal 

sequence analysis methods (Cornwell, 2015) might be useful too. The key difference is level of 

analysis. While most group sequence analysis focus on what the entire group is doing at a given 

moment of time, REM can be considered more of a micro sequence analysis, focusing on who 
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interacts with who at a given time. Finally, Marcum and Butt’s (2015) ego-centric REM model 

links an individual with the actions they are taking and models the different patterns of likely 

sequence combinations. 

 Furthermore, there are also some general rules of thumb worth mentioning for best 

practices on using REM. First, how many parameters can be modeled in a reasonable way? One 

key difference from REM than other methods like regression is that the addition of additional 

parameters does not mean an addition explanation in variance or in this case, the prediction of 

relational events. In fact, telling the model to look for parameters that are clearly not there in the 

data will most likely make the fit even worse. As such, we think that Miller’s Law of seven plus 

or minus two might serve as a general rule of thumb for the maximum amount of test parameters 

a researcher should use because it represents a nice cognitive explanation for the amount of 

information an individual can handle at any given time. To that end, the model should make 

intuitive sense, not simply statistical sense.  This suggestion, however, does not of course include 

control variables, which begs the question: which type of parameters should I always control for 

when using REM? Again, this is subjective to an extent, but following general theories of social 

networks (Robins, 2013), we suggest generally controlling for, if the data allows it, inertia (i.e., 

history always repeats itself), reciprocity (i.e., you scratch my back, I’ll scratch yours), closure 

(i.e., the friend of my friend will also be my friend), and popularity (i.e., the rich get richer). The 

reasoning is that these are some of the most common explanations for forming social networks 

(Lusher et al., 2013) and thus, should translate well when networks are conceived as interactions 

via relational events.  

Additionally, there is an issue of sample size. The key to an adequate sample size is not 

the amount of actors, but the proportion of the number of events to actors. For instance, 50 
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events would be good size for four actors, but not for 50 actors. Conversely, because the margin 

of error for REM parameter estimates is bounded by the square root of the ratio of events to 

possible events, larger datasets will generally have more power, but there is a diminishing benefit 

to observing more events for a fixed number of actors (e.g., heterogeneity of effects because of 

time). In practice, researchers have used a variety of samples sizes. For instance, Butts (2008) 

analyzed sequences with as few as 70 events for 28 individuals. On the opposite end of the 

spectrum, Quintane et al. (2014) used a sample of 4,348 events for 194 individuals. The authors 

of this paper have used datasets with 4, 8, and 20 individuals with the number of relational 

events ranging from around 200 to a maximum of 1,200. Thus, while there is no distinct 

minimum ratio, we recommend that researchers at the least observe more events than actors (i.e., 

a moderate ratio), and not include more parameters than events. 

 Finally, it is important to consider the overall analytical possibilities of REM. 

Theoretically, REM lends itself favorably to frameworks with constructivist leanings that have 

been difficult to implement empirically in the past because REM does not assume teams and 

groups are “well-defined, clearly bounded entities with a stable set of members” (Poole & 

Contractor, 2011, p. 194). Frameworks like the structurational perspective (Giddens, 1985) or 

bona fide group framework (Putnam & Stohl, 1990) can be used because REM has ability to take 

into account shifting/blurry group membership and interactional interdependence since the 

fundamental point of analysis is the interaction event, not group membership or individual level 

characteristics.  

Contextually, REM is well suited to analyze how groups function and organize in the 

21st century using technology given the amount of detailed recording in various new 

communication mediums (Lazer et al., 2012). Things like Tweets, Facebook posts, Wiki edits, 
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blog postings, event check-ins, and text messaging all contain sufficient information that can be 

exploited by REM because they represent histories of interactions at specific time points. REM is 

one way to understand the patterns of how groups are using these technologies in similar or 

different ways. 

Limitations of REM 

 In our view, there are three current problems researchers must think about when applying 

REM to analyze group interaction processes: (1) assumption of availability, (2) heterogeneity of 

effects, and (3) linking REM with group outcomes. Each is discussed below. 

 Assumption of availability. One of the basic assumptions of REM is that each actor has 

the availability to communicate with another. In many group settings, this assumption is fine, 

especially within single groups. However, when multiple groups are studied, as is the case with 

MTSs, this assumption might be problematic. One way to help remedy this problem is the 

incorporation of a structural zero file. A structural zero file simply lets the model know which 

dyads are unavailable to communicate with one another, as was the case with the current 

example in that the drivers were restricted to communication with their captains. As such, when 

researchers use REM, they need to take into account any barriers that would prohibit some 

members from communicating with others, otherwise estimates would surely be unreliable.  

 Heterogeneity of effects. Heterogeneity of effects refers to when individual effects (e.g., 

reciprocity) might differ depending on which time period is used for modeling the relational 

event history. That is, is there some reason to believe that some SSSs like reciprocity might be 

higher or lower depending on the time frame of which the analysis was carried out (i.e., portion 

of the relational event history). As it currently stands, REM can only analyze effect sizes for the 

entire time slice, not differentiating the magnitude in different slices of time. For example, as 
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groups engage in the initial stage of a project, members may have a good deal of freedom to 

interact with one another, resulting in triadic closure being a common signature.  Once the group 

has moved into its performance stage, members may be sufficiently occupied by the task and 

may not need as much time to interact freely, and thus, triadic closure may no longer be 

common. An REM run on the entire event history that includes both stages would have difficult 

determining if triadic closure was more common in one phase (e.g., initial stage) versus another 

(e.g., performance stage).    

There have been a couple of strategies to remedy this problem. For instance, Quintane et 

al. (2013) used a nested time frame, running models on a short and long term frame to determine 

whether or not effects were heterogeneous. And Author citation et al. (2015) used a multi-panel 

approach, slicing a lengthy time frame not into nested waves, but discrete ones. In the above 

example, this would mean running REMs on the initial stage and performance stage separately to 

see if there were any differences in interaction patterns. Another option would be to include 

dummy variable that represents a time covariate, which would run an interaction effect on 

parameter estimates and different waves of time. The choice of how to handle the problem of 

heterogeneity of effects (i.e., nested models, discrete slicing, or time covariate) can be 

theoretically or data driven. For instance, slicing the event history based on some sort of 

environmental factor (e.g., change in the nature of the task) might be an effective way to 

delineate outside effects while slicing the event history using a data driven exploratory approach 

might give important insight to a previously unknown environmental factor influencing group 

interactions (e.g., it might challenge the researcher to explain why patterns were different in one 

time period versus another).  One data driven approach is breakpoint analysis (Chiu & Khoo, 
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2005), which would statistically divide the event history into discrete waves of high and low 

activity depending on the effects put into the model (e.g., waves of high and low reciprocity). 

 Linking REM with group outcomes. If, as the main argument of the paper has been, 

REM is a fruitful way of understanding group interaction processes, then a logical next step 

might be to determine if there are any individual or group performance outcomes related to those 

processes. By itself, REM cannot provide a direct inference to outcomes like group performance 

since it is only capable of predicting specific interaction patterns. However, with a creative blend 

of mixing methods, there is potential to link REM with a variety of group outcomes. For 

instance, simple independent t tests of sufficient statistics between low and high performing 

groups can provide one way of determining differences between high and low performing group 

interactions, especially if the sample size is not very large. Independent sample t-tests are robust 

to violations of statistical assumptions, so long as the groups being compared are independent of 

one another.  For instance, are more successful groups more or less likely to have their captains 

relay information across teams? Or, are those captains who relay information more likely to be 

perceived as effective leaders by other group members?  

 Translating the level of analysis from group to individual outcomes is another challenge.  

Another option that is being explored is a multiplex REM. A multiplex REM investigates how 

patterns of one type of interaction (e.g., communication) predict another event (e.g., performance 

outcome). For example, if one type of event would represent an instance of high performance, 

like solving one problem or accomplishing part of a task, then the multiplex REM could explore 

whether or not different interaction patterns predict those successful or even unsuccessful events 

(e.g., friendly fire). This can answer how interaction patterns “scale up” to create positive or 

negative group outcomes. 
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Concluding remarks 

 Under the traditional lens of group process, performance is a consequence of emergent 

properties. The lower-level characteristics of the team, such as skills, cognition, or personality, 

will lead to higher-order outcomes. These phenomena are what drive the output of the group. 

Further, the pattern and timing of interactions among individuals simply contribute to the 

emergence of different properties of the team (Kozlowski & Klein, 2000).  

The REM takes an alternative approach and suggests that both emergent properties and 

performance are consequences of complex group interaction processes that happen in real time. 

As such, group process should not be treated as aggregations of interactions or simple 

psychological constructs. What REM provides is a sort of methodological requisite variety, 

meaning that the method is nearly as complex as the phenomenon it is trying to analyze because 

there are few empirically methods that are sophisticated enough to analyze unfolding interactions 

over time. Under the lens of relational events, lower-level interactions are no longer viewed as 

elements of a broader phenomenon, but rather as realizations of process itself. Specifically, each 

interaction is driven by the situational context, the attributes of the individuals, and the preceding 

events. In our example, we can examine what are the motors that drive an individual to 

communicate; is it familiarity, or a sense of reciprocity? Do leaders take on roles as information 

brokers, or does trust predicate interaction? By asking these fundamental questions, we no longer 

focus on how actions form broader phenomenon, but rather focus on how action itself evolves.  

The relational event model enables scholars to effectively identify patterns amongst the 

noise of the stream of interaction, which is well beyond the ability of qualitative observation to 

sort out. As a consequence, REM allows researchers to test and apply theoretical frameworks 

that were previously difficult to adopt because of the limitations of current methodological tools. 
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Theories such as discursive leadership (Fairhurst, 2007) or transactive memory systems 

(Wegner, 1987) can be operationalized and tested for because they both emphasize specific 

group interaction processes over time. The goal of this paper was to introduce that method to 

analyze group interactions processes and provide a more hands on tutorial for implementing 

REM for future work.  
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Table 1 

Data format for REM 

 
Time 

 

 
Sender 

 
Receiver 

 
0.61 4 3 
0.66 3 4 
0.90 3 4 
1.45 1 2 
1.53 2 1 

   
 

Note: Time is standardized where the value 1 equals 1 minute.  
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Table 2 

Sequential structural signatures in current example 

 
Sufficient statistic 

 

 
Visualization 

 
Statistic 

 
Past events 

  

Inertia 
 

𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝜔𝜔(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) 

Reciprocity 
  

𝑠𝑠𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼𝑅𝑅(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝜔𝜔(𝑗𝑗, 𝑖𝑖, 𝑡𝑡) 

 
Attributes 

  

Captain as sender 
   

 

𝑠𝑠𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝟏𝟏{𝑖𝑖 is captain} 

Cross-team relay 

 

𝑠𝑠𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼𝑅𝑅(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝟏𝟏{𝑘𝑘 → 𝑖𝑖, 𝑖𝑖 → 𝑗𝑗} 
× 𝟏𝟏{𝑘𝑘, 𝑗𝑗 not captain} 
× 𝟏𝟏{𝑖𝑖 is captain} 

 
Environment 

  

Trust 

 

𝑠𝑠𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝐼𝐼(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡(𝑖𝑖, 𝑗𝑗) 
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Table 3 

Matrix of raw number of messages sent and received 

  
Phantom 
Captain 

 
Phantom 
Driver 

 
Stinger 
Captain 

 
Stinger Driver 

 
Total 
Sent 

 
Phantom 
Captain 

 
- 

 
63 

 
12 
 

 
- 

 
75 

 
Phantom 
Driver 
 

 
51 

 
- 

 
- 

 
- 

 
51 

 
Stinger 
Captain 
 

 
17 

 
- 

 
- 

 
75 

 
92 

 
Stinger Driver 
 

 
- 

 
- 

 
80 

 
- 

 
80 

 
Total received 
 

 
68 

 
63 

 
92 

 
75 

 
298 

 

Note: N = 298 total relational events 
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Table 4 

Relation event modeling results 

 
Sufficient statistic 

 

 
Maximum 

likelihood estimate 
 

 
Standard error 

 
p-value 

 
Constant 

 
0.027 

 
0.243 

 
0.909 

 
Past events 

   

Inertia 0.027* 0.013 0.041 
Reciprocity -0.023 0.013 0.085 

 
Attributes 

   

Captain as sender -0.274* 0.125 0.029 
Cross-team relay -0.375 0.336 0.264 

 
Environment 

   

Trust 0.232** 0.056 0.001 
    
AIC 57.984   
BIC 80.167 

 
  

 

Note: * indicates a p value of < 0.05, ** indicates a p value of < 0.01.  
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Table 5 

Goodness of fit metrics 

 
Metric 

 

 
Null Model 

 

 
Full Model 

Deviance 
 

224.4623 45.9848 

Misclassification Rate 
 

83.3% 73.8% 

AIC 
 

226.4623 57.9848 

BIC 
 

230.1594 80.1674 
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Figure 1. Conceptual framework for the process of relational event occurrence.
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Online supplementary material 1: Technical Intro to Relational Event Modeling 

Relational Event Data 

 The first type of observable data is the dyadic interaction. These behavioral events must 

be directed, may fall into a particular class, and are observed at a specific moment in time. 

Additionally, relational events may carry weight. Formally, a relational event is a tuple 𝑒𝑒 =

(𝑖𝑖𝑒𝑒 , 𝑗𝑗𝑒𝑒 ,𝑘𝑘𝑒𝑒 ,𝑤𝑤𝑒𝑒 , 𝑡𝑡𝑒𝑒) containing the sender 𝑖𝑖𝑒𝑒, receiver 𝑗𝑗𝑒𝑒, type 𝑘𝑘𝑒𝑒, weight 𝑤𝑤𝑒𝑒, and time 𝑡𝑡𝑒𝑒 of an 

event; the full sequence of 𝑚𝑚 events is the set 𝐸𝐸 = {𝑒𝑒1, … , 𝑒𝑒𝑚𝑚}. Let 𝐴𝐴 = {1, … ,𝑛𝑛} be the set of all 

𝑛𝑛 actors, and 𝐷𝐷 ⊆ 𝐴𝐴 × 𝐴𝐴 the set of all dyads. Events can fall into a set of 𝐾𝐾 discrete classes. For 

each class 𝑘𝑘, we define the weight function 𝜔𝜔𝑘𝑘𝑘𝑘 as the accumulated weight of all past interaction 

events (Brandes, Lerner, & Snijders, 2009). This function represents the relative strength of the 

directed relationship between each dyad, as measured by the frequency and intensity of 

interaction.  

 (𝜔𝜔𝑘𝑘𝑘𝑘)𝑖𝑖𝑖𝑖 = � |𝑤𝑤𝑒𝑒| ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒 �−(𝑡𝑡 − 𝑡𝑡𝑒𝑒)
𝑙𝑙𝑛𝑛2

𝑇𝑇1/2
(𝑘𝑘)�

𝑒𝑒:𝑖𝑖𝑒𝑒=𝑖𝑖,𝑖𝑖𝑒𝑒=𝑖𝑖,𝑘𝑘𝑒𝑒=𝑘𝑘,𝑘𝑘𝑒𝑒<𝑘𝑘

 ( 1) 

In order to place a higher weight on more recent events, the accumulated relational event volume 

is decayed by some half-life parameter 𝑇𝑇1/2
(𝑘𝑘) ∈ ℝ>0; this parameter can be consistent across all 

event types, or unique for each type. Refer to Leenders et al (in press) for a discussion of 

memory and a half-life in relational event networks. 

The second type of observable data is attribute information; individual, such as gender, 

age, or institutional role; dyadic, such as friendship status or trust; environmental, such as 

information about the physical environment, the stage in a creative process, or the status of an 

emergency. Let 𝑣𝑣ℎ𝑘𝑘 = (𝑣𝑣1ℎ𝑘𝑘, … , 𝑣𝑣𝑛𝑛ℎ𝑘𝑘) be the vector of individual covariates corresponding to 

attribute ℎ at time 𝑡𝑡; let 𝑡𝑡ℎ𝑘𝑘 = �𝑡𝑡𝑖𝑖𝑖𝑖ℎ𝑘𝑘�(𝑖𝑖,𝑖𝑖)∈𝐶𝐶
 be the matrix of dyadic covariate values for attribute 
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ℎ at time 𝑡𝑡; finally, let 𝑧𝑧ℎ𝑘𝑘 be the state of environmental factor ℎ at time 𝑡𝑡. The state values may 

hold constant over time, or may be variable. For simplicity of notation we combine all attribute 

information into the set 𝐺𝐺𝑘𝑘. Each of these attribute values may change over time, or may remain 

constant. We assume that at any given time 𝑡𝑡 the values of each of these factors is known to the 

actors in the network. While it is possible to model a system in which actors control individual 

covariates (T. Snijders et al., 2007), we assume that actors do not directly control the value of the 

covariates or the environmental factors. 

The Event Rate 

Following the event history approach (Blossfeld & Rohwer, 1995), the probability of the 

sequence and timing of events can be defined by the hazard rate and survival function for each 

possible action. The hazard rate can be interpreted as the instantaneous likelihood of an event 

occurring, given that it has not yet occurred. Suppose that the random variable 𝑋𝑋 has density 

function 𝑓𝑓 and cumulative distribution function 𝐹𝐹; then mathematically the hazard rate for a 

particular value is: 

ℎ(𝑒𝑒) =
𝑓𝑓(𝑒𝑒)

1 − 𝐹𝐹(𝑒𝑒) 

The survival function can be interpreted as the likelihood of an event occurring after a given 

value 𝑒𝑒. Assuming the same density and distribution function, the survival function may be 

expressed as: 

𝑆𝑆(𝑒𝑒) = 1 − 𝐹𝐹(𝑒𝑒) 

In the case of the relational event model, the hazard rate for a 𝑖𝑖 directing an action of type 

𝑘𝑘 to receiver 𝑗𝑗 at time 𝑡𝑡 is some function of sufficient statistics and corresponding intensity 

parameters. The functional form is taken from the Cox proportional hazards model (Cox, 1972). 
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 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘( 𝑡𝑡 ∣∣ 𝐺𝐺𝑘𝑘;𝜽𝜽 ) = 𝜆𝜆0(𝑡𝑡) 𝑒𝑒𝑒𝑒𝑒𝑒�𝜃𝜃′𝑠𝑠(𝑖𝑖, 𝑗𝑗,𝑘𝑘,𝐺𝐺𝑘𝑘)� ( 2) 

The parameter 𝜆𝜆0(𝑡𝑡) controls the relationship between the hazard rate and time; the simplest case 

is to assume that this value is constant, which corresponds to the Exponential model.  

To fully define the relational event model, the set of sufficient statistics 𝑠𝑠 needs to be 

explicitly defined; such variables should encompass the previous event history, as well as all 

other exogenous influences. Each sufficient statistic maps the network information 𝐺𝐺𝑘𝑘 to a real 

number. This value represents the prevalence of a particular structure in the network. These 

structures may be single-relational or multi-relational. The sufficient statistics must be finite, 

dependent on past history (in terms of volume and timing), and are affine independent (Butts, 

2008). To capture the influence of a particular statistic on the frequency of a relational event, 

define the parameter vector 𝜽𝜽. The sign and magnitude of each element in 𝜽𝜽 determines how 

influential a particular network effect is regarding the generation of relational events across a 

given dyad. 

The Likelihood Function 

 The likelihood function for the full event sequence and timing can be explicitly computed 

by combining the hazard rate for each realized event with the survival function for all possible 

events. Leaving out the time dependent parameter 𝜆𝜆0(𝑡𝑡), the partial likelihood function is given 

by Eq. 3: 

𝑓𝑓(𝐸𝐸;𝜽𝜽) = �𝜆𝜆𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑘𝑘𝑒𝑒� 𝑡𝑡𝑒𝑒 ∣∣ 𝐺𝐺𝑘𝑘𝑒𝑒−1;𝜽𝜽 � 𝑒𝑒𝑒𝑒𝑒𝑒�−𝛥𝛥𝑡𝑡𝑒𝑒 � � 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘�𝑡𝑡𝑒𝑒 ∣ 𝐺𝐺𝑘𝑘𝑒𝑒−1;𝜃𝜃�
(𝑖𝑖,𝑖𝑖)∈𝐶𝐶𝑘𝑘=1,…,𝐾𝐾

�
𝑒𝑒∈𝐼𝐼

 ( 3) 

The value Δ𝑡𝑡𝑒𝑒 is equivalent to the time elapsed between events, or 𝑡𝑡𝑒𝑒 − 𝑡𝑡𝑒𝑒−1. This expression 

represents the conditional likelihood of every event in the sequence, along with the conditional 

likelihood that no other events occurred in the period between observed actions.  
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 Often it is the case that relational event data is simply ordinal; i.e. there is no specific 

timing data available. In this scenario, the likelihood function can be reduced to a product of 

multinomial probabilities derived from the same event rate as in (2). 

𝑓𝑓(𝐸𝐸;𝜽𝜽) = �
𝜆𝜆𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑘𝑘𝑒𝑒� 𝑡𝑡𝑒𝑒 ∣∣ 𝐺𝐺𝑘𝑘𝑒𝑒−1;𝜽𝜽 �

∑ ∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘�𝑡𝑡𝑒𝑒 ∣ 𝐺𝐺𝑘𝑘𝑒𝑒−1;𝜃𝜃�(𝑖𝑖,𝑖𝑖)∈𝐶𝐶𝑘𝑘=1,…,𝐾𝐾𝑒𝑒∈𝐼𝐼

 ( 4) 

Recovering Model Parameters 

 Coefficient estimates for relational event models – ordinal or temporal – are derived from 

the solution of the maximum likelihood problem: 

𝑎𝑎𝑡𝑡𝑎𝑎𝑚𝑚𝑎𝑎𝑒𝑒
𝜃𝜃

𝑙𝑙𝑙𝑙𝑎𝑎�𝑓𝑓(𝐸𝐸;𝜽𝜽)� ( 5) 

Common optimization techniques such as Newton-Rhapson are well-suited to solving this 

maximization problem. Standard errors for the coefficients can be computed from the Hessian 

matrix at the solution. Alternatively, Bayesian approaches may be utilized for parameter 

estimation. In some situations, it is actually suggested that this class of solution method provides 

more stable estimates of the standard errors (Marcum & Butts, 2015). 
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Online supplementary material 2: Relevant R code 

Link do datasets: Click here for zip file data 
R code 
# Install and load the programs 
install.packages("statnet") 
install.packages("relevent") 
install.packages("informR") 
library(informR) 
 
# Load datasets 
#The “sample.csv” is the event history file. The ‘read.csv’ tells the program to read it and name it ‘REM’ 
REM = read.csv("sample.csv")  
 
# the “Event_Cov.txt” is the structural zero file. It tells the program which dyads cannot communicate. This line 
tells the program to read it as a matrix (as.matrix) and name it ‘cov’. 
cov = as.matrix(read.table("Event_Cov.txt"))  
 
# “Intercept.txt” is the intercept file. This line tells the program to read it (read.table) and call it ‘Intercept’. 
Intercept = read.table("Intercept.txt")  
 
# “Trust.txt” is the trust matrix after mission 1. This line tells the program to read it and call it ‘Trust’. 
Trust = as.matrix(read.table("Trust.txt"))  
 
#Relevent requires the user to combine the two networks into an array. The array is defined by 2 networks, with 4 
rows and 4 columns: c(2,4,4). ‘abind’ is the function that combines them. We are going to name it ‘combmat1’. 
combmat1 <- array(dim=c(2,4,4), data=abind(cov, Trust)) 
 
#Detail of effects 
#CovSnd = This effect is for the Intercept. It answers, “what is the baseline tendency of an event to even happen?” 
#CovEvent = Controls for structural zero and influence of trust network. It answers “what is the likelihood of a 
team member sending information to somebody if they highly trust them”. The high negative values on the structural 
zero file tells the program to ignore ties between those dyads. 
# FrPSndSnd = Inertia. This is the inertia effect. It answers, “what is the likelihood of a team member sending 
information to a member that they have sent information to in the past?” 
# PSAB-BA = Reciprocity. This effect answers, “what is the likelihood of a team member sending information to a 
team member that they have just received a message from?” 
# Cross-team relay = not available in relevant 
#Captain as sender = not available in relevant 
 
#Run the model 
REMfit = rem.dyad(REM, n = 4, effects=c("CovEvent","CovSnd","PSAB-BA", "FrPSndSnd"), ordinal = FALSE, 
covar=list(CovEvent=combmat1,CovSnd=Intercept), hessian=TRUE) 
 
#Display results 
summary(REMfit) 
 
Relational Event Model (Temporal Likelihood) 
 
              Estimate     Std.Err Z value  Pr(>|z|)     
FrPSndSnd   2.78675783  0.23083159 12.0727 < 2.2e-16 *** 
CovSnd.1   -1.76238480  0.20094766 -8.7704 < 2.2e-16 *** 
CovEvent.1  0.00133117  0.00076287  1.7449  0.080995 .   
CovEvent.2  0.00041910  0.00010942  3.8302  0.000128 *** 
PSAB-BA     1.07392130  0.12255721  8.7626 < 2.2e-16 *** 
--- 

https://drive.google.com/file/d/0B0o3PF5d9YhKUVE2Y1VLYU9wSjg/view?usp=sharing
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Null deviance: 523.7979 on 298 degrees of freedom 
Residual deviance: 7.982701 on 294 degrees of freedom 
 Chi-square: 515.8152 on 4 degrees of freedom, asymptotic p-value 0  
AIC: 17.9827 AICC: 18.18818 BIC: 36.46817 
 
 
Results in table format 
 

 
Sufficient statistic 

 

 
Maximum 

likelihood estimate 
 

 
Standard error 

 
p-value 

 
Constant 

 
-1.76 

 
0.21 

 
 > 0.01 

 
Past events 

   

Inertia 2.79* 0.23 > 0.01 
Reciprocity 1.07* 0.12 > 0.01 

 
Attributes 

   

Commander as sender na na na 
Cross-team relay na na na 

 
Environment 

   

Trust 0.0004* 0.0001 > 0.01 
    
AIC 36.47   
BIC 17.98 

 
  

 
 
 
#See how much were not very well predicted, this simple model was correct 41.61% of the time for predicted event 
history 
mean(apply(REMfit$predicted.match,1,all)) 
 
#A line by line assessment of events that were predicted correctly and incorrectly. TRUE means correct and FALSE 
means incorrect. 
REMfit$predicted.match 
 
# This displays the event history and tells us how “surprising” each event was. It uses a ranking scheme that asks “to 
what extent the events viewed most likely to occur are in fact those that are observed” (Butts, 2015, p. 6). A high 
ranking value indicates that the model was way off that event, while a low value indicates that it was what the model 
expected to happen next. 
cbind(REM,REMfit$observed.rank) 
 


