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This study focuses on the initial conditions of work teams and the impacts of these con-

ditions on the development of teams’ transactive memory (TM) systems through com-

putational modeling. TM theory describes the conditions under which team members

retrieve and allocate information to accomplish collective tasks. Previous research has

shown evidence for teams developing TM systems over time, but field research does not

allow for the extensive manipulation of initial conditions a team might face when

working together; conversely, this experimental research allowed for such manipulations

without negatively impacting the ongoing productivity of organizations. Initial knowl-

edge, initial accuracy of expertise recognition, and network size are explored as predic-

tor variables on the development of a TM system as mediated through communication.

System development is measured by the degree to which team members accurately per-

ceive other members’ expertise and the extent to which the system has differentiated its

stored knowledge. This study includes theoretically derived propositions tested through

a path analysis of computationally generated data. The analysis validates the five prop-

ositions and is consistent with the developmental mechanisms of TM theory. Three

additional paths proved to be significant and directly connect the initial conditions with

the developmental indicators at the end state model.
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Researchers have investigated whether ‘‘information-age organizations’’ need to

develop and transfer intellectual material to survive (Badaracco, 1991; Drucker,
1997; Peters, 1992). What has resulted is an overwhelming belief in the importance

of using workers’ knowledge in order for organizations to thrive in the present
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knowledge economy; in any work based on knowledge, expertise is the most impor-
tant resource (Anand, Manz, & Glick, 1998; Argote & Ingram, 2000; Faraj & Sproull,

2000). Klein and Prusak (1994) illustrate the importance of using workers’
knowledge, suggesting that organizations compete with one another based on

their intellectual resources, and similar to financial, physical, or human capital,
knowledge capital allows organizations to increase the value of their products and
services.

The emphasis on transferring intellectual material among people creates a greater
need to identify what individuals know, as well as what those individuals think others

know. Perceptions of what others know is a strong indicator of information sharing
within work teams (Borgatti & Cross, 2003; Palazzolo, 2005). Clearly, organizational

knowledge sharing must be enhanced, but how this can be accomplished still remains
a critical question. Part of the answer may include improving individuals’ ability to

accurately identify who knows what and working toward a differentiated knowledge
structure. Developing an accurate and differentiated knowledge structure helps in
sending and requesting information from appropriate individuals in an efficient and

effective manner. However, as knowledge gets spread out among various people, who
can be geographically dispersed, it becomes increasingly difficult to identify the

location of needed knowledge.
To address the above concerns, this study describes how transactive memory

(TM) theory (Wegner, 1987, 1995) provides a theoretical basis for understanding the
development of organizational memory in work teams. TM theory is based on the

premise that members of effective teams, working on interdependent tasks requiring
multiple areas of expertise, seek to reduce individual workload and repetitive work

by developing expertise in distinct areas and relying on others in the team to spe-
cialize in other areas where they lack expertise. A TM system is a collection (or
network) of interdependent individuals, their memory systems, and the communi-

cation occurring among them (Wegner, 1987). Rulke and Galaskiewicz (2000) sug-
gest that research on TM theory would greatly benefit from taking a network

perspective when examining how expertise is divided among different individuals,
and, perhaps more importantly, how information is retrieved and allocated in teams.

A network perspective allows for the direct measure of connections between multiple
people and, therefore, provides more rich information regarding the underlying

processes of the system. In recent years, some researchers have begun to look at
and describe TM systems as networks (Borgatti & Cross, 2003; Carley & Hill, 2001;
Contractor & Monge, 2002; Cross, Rice, & Parker, 2001; Palazzolo, 2005). This

network perspective is used here to examine TM systems.
The TM system is expressed as a collection of people in a network, encompassing

both attributes of the individuals as well as the relations among them (Wasserman &
Faust, 1994). A TM system allows members to gain access to a knowledge base larger

and more complex than any one person possesses alone (Moreland, 1999; Wegner,
1987). Thus, a TM system is a property of the network and can be developed over

time as people in the network allocate information to and retrieve information from
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one another (Wegner). Ideally, this access to a wider amount of information should
improve team performance.

Given the heavy emphasis on work to be accomplished by teams in the present
economy, this research is important because it seeks to understand the dynamics of

team development, based on a variety of team member configurations, and how
various initial conditions can affect the development and utilization of a team’s TM
system. Such an understanding is important not only for TM theorists but also for all

who work in teams and manage teams. Further, this work is applicable to those who
study interpersonal communication, group communication, and organizational

communication in that TM systems encompass these levels and the findings have
implications for researchers at each of these levels as well.

Last, this work demonstrates the role of computational modeling for theoretical
development in communication. It shows the benefits and importance of under-

standing communication from a network perspective and illustrates how connec-
tions among people can be modeled and, thus, specified at an extremely detailed
level. Further, the computational modeling allows for the generation of macrolevel

systematic properties of group interaction stemming from the microlevel, individual,
and dyadic properties specified. Although this research focuses on TM theory, the

methodology is applicable to a wide range of communication theories.
TM theory offers three generative mechanisms to describe the development of

a TM system: directory updating, communication to allocate information, and com-
munication to retrieve information. This paper defines these mechanisms and their

interrelations in greater detail through a network perspective and computational
model. Based on these theoretical mechanisms and prior empirical research, five

theoretically deduced propositions are presented to explain the emergence and
development of a TM system. Next, an agent-based computational model formu-
lated on the three generative mechanisms of TM theory is used to logically validate

the theoretically derived propositions through a virtual experiment. Although the
results of these simulations need to be validated with empirical data, they provide

important theoretical contributions and directions for future research. The study
concludes with a discussion of the findings with respect to TM theory for organiza-

tional communication.

Theoretical components as generative mechanisms and developmental measures

Consider a network that must accomplish a set of tasks for a large project. The tasks
may require multiple areas of expertise that each individual may not possess alone.

However, collectively the network may have the necessary knowledge to complete the
tasks. Thus, members in the network are interdependent because they must exchange

information to complete their tasks. To understand how a team could complete their
project, TM theory identifies three interrelated processes or generative mechanisms

by which network members develop their TM system: (a) directory updating, (b)
communication to allocate information, and (c) communication to retrieve infor-

mation. Following these processes yields two measures of the extent to which the TM
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system has developed or matured: (a) accuracy in expertise recognition and (b)
knowledge differentiation.

Extensive research identifies accurate expertise recognition and knowledge dif-
ferentiation as characteristics of a well-developed TM system. Accuracy of expertise

recognition is the extent to which people in the network accurately perceive what
knowledge other people possess (Rau, 2000) and is used as a TM system development
measure because the three generative mechanisms should lead to accurate percep-

tions. Knowledge differentiation is the extent to which network members are experts
in areas that other members are not (Wegner, 1987). Knowledge differentiation is

used as a measure of the TM system development and occurs as individuals accept
responsibility for different knowledge topics (Wegner).

Knowledge differentiation and accuracy of expertise recognition are essential for
the development of a TM system (Faraj & Sproull, 2000). The mere presence of

diverse expertise, or differentiation, is a necessary but insufficient precondition to
a well-developed TM system (Faraj & Sproull). Equally important factors are know-
ing who possesses expertise, realizing where it is needed, and bringing the needed

expertise to that context through interaction. Additionally, accurately recognizing
expertise and having differentiated expertise facilitate the sharing of tasks and allow

goals to be accomplished collectively (Faraj & Sproull). Finally, accurate expertise
recognition and a differentiated knowledge base reduce the workload for team

members because they can simply go to an expert for information, rather than
duplicating existing knowledge (Faraj & Sproull; Hollingshead, 1998b; Moreland,

1999). The intention here is to explore how different initial conditions can influence
the outcomes, or end states, of teams that strictly follow the generative mechanisms

of TM theory.

Directory updating

Directory updating is the process by which team members create and revise their
perceptions of ‘‘who knows what’’ (Wegner, 1995). This process consists of two

separate directories: a self-directory and an others-directory. The self-directory is
used to keep a record of one’s own knowledge levels for various knowledge domains

and is based on three determinants: (a) what the person knew at a previous point in
time, (b) what information was sent to the person from the environment outside of

the team, and (c) what information other people in the network allocated to him or
her. People learn about their own level of expertise through interactions as people
assert their individual expertise, question others about their expertise, demonstrate

expertise, reference common knowledge or interests, reference shared knowledge or
interests, discuss previous experiences related to the topic, or discuss lack of knowl-

edge about the topic (Hollingshead, 1998a).
In the others-directory, people maintain perceptions of what they think each other

network member knows (Nickerson, 1999; Wegner, 1995). The others-directory is
influenced directly by communicating with a second person, as well as indirectly by

communicating with other team members who have their own perceptions of the
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second person’s knowledge. For example, in a network with three people (i, j, and k),
i’s perception of how knowledgeable j is regarding organizational policies might

increase by directly asking j questions and finding j to be a good source of information
on this topic. However, i’s perception of how knowledgeable j is on organizational

policies might decrease after i talks with k who, based on past interactions, knows that
j’s information is inaccurate and outdated. This process of learning what others know
is not novel; it has been studied via networks in the social influence literature (Marsden

& Friedkin, 1994; Rice, 1993; Robins, Pattison, & Elliott, 2001). TM theory incorpo-
rates social influence as one process of many that yield a TM system (see Palazzolo,

2003, for a discussion of social influence in TM systems).
Through directory updating, people are able to recognize where expertise resides

within the network. Here, the expert is the person or people perceived to have the
most knowledge on a given topic based on these two directories; thus, expertise is the

knowledge of the perceived most knowledgeable member(s). Given its perception-
based status, a team’s expert (and, therefore, the team’s expertise) can vary by each
team member. This process of directory updating occurs in several ways, including

default entries based on surface attributes (such as age or gender), negotiated entries
based on the acceptance of responsibility for certain information, access entries based

on the duration or recency of exposure to information, and expertise entries based
on the identification of one person having more knowledge or interest in an area

than another (Wegner, 1995).
Networks can comprise of people having varying levels of expertise. For example,

some networks may exclusively comprise people with low levels of individual knowl-
edge (e.g., novices working on a new project); alternatively, other networks may have

members all with high levels of individual knowledge (e.g., expert teams for crisis
management). Different initial levels of individual knowledge may affect the devel-
opment of TM systems in different ways.

As demonstrated by Moreland (1999), if team members personally have all the
knowledge needed to complete their tasks (i.e., higher initial knowledge across all

topics for all members), then there is little incentive to identify the expertise of others
in the network. Highlighting this point, Nickerson found that when people are highly

knowledgeable across different topics, they assume others know the same information
(Nickerson, 1999; Nickerson, Baddeley, & Freeman, 1987). Collectively, these results

suggest that in situations where everyone in a network is highly knowledgeable on all
topics, they will be self-sufficient for their tasks and have little need or incentive to
communicate to get or send information within the network. In contrast, when

everyone in a network has little knowledge across all topics, they will have a much
greater need to communicate to get and send information. Thus, the first proposition

relates initial individual knowledge levels and communication in the network.

P1: Networks with members who start with a lower individual knowledge base will have

a higher rate of communication than networks where members have a higher initial

individual knowledge base.
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Communication

Communication is a vital mechanism in TM systems since it is the means by which

team members share information. Communication is particularly necessary for
directory updating when people do not know one another (Hollingshead, 2000;

Lewis, 2000; Nickerson, 1999). In line with network theory and terminology, the
extent to which people communicate is referred to as communication density and is
defined as the percentage of the actual communication ties between pairs of team

members compared to the total amount of communication possible between all pairs
of team members. In TM theory, there are two types of communicative acts that are

essential to the TM system: communication to allocate information and communi-
cation to retrieve information.

Communication to allocate information refers to the process by which members
forward information to those whom they believe to be most qualified to encode the

information for future access (i.e., the perceived experts in the network for a specific
topic). Within a TM system, individual knowledge, perceptions of others’ knowl-

edge, and expertise recognition play important roles in determining how to manage
incoming information. The allocation of information is important not only to signal
identification of experts but also to provide informational support to the experts as

well (Faraj & Sproull, 2000). Information allocation is triggered by new information
entering from the environment from sources such as e-mail messages, Listserv mes-

sages, conversations, or newspaper articles, among many others. When people
receive new information, rather than isolating it in their personal memory, the

information may be allocated to others in the network who have a more ‘‘relevant
and most well-developed directory structure for items of that kind’’ (Wegner, 1995,

p. 329).
Communication to retrieve information is the process by which team members

access information from knowledgeable others in the network. Retrieval coordina-

tion is used to accomplish or assist in assigned tasks for which they do not possess all
the necessary expertise (Rice, Collins-Jarvis, & Zydney-Walker, 1999), and it allows

members to systematically leverage knowledge from within the TM system (Palazzolo,
2005). There is evidence that seeking information outside of the immediate network

increases the flow of information into the network (Austin, 2000; Teigland & Wasko,
2003). This process then leads to an increase in awareness of others’ knowledge

resources and expands the possibilities for finding new sources of expertise, thus
resulting in greater accuracy of expertise recognition. Research by Stasser, Stewart,

and Wittenbaum (1995) demonstrates the importance of explicit expertise recogni-
tion when retrieving information stored by others in the network. Their results
suggest that although expert roles facilitated the dissemination of unshared infor-

mation and the discovery of a hidden profile, awareness of expertise based solely on
forewarning or gained through interaction apparently did not promote the sampling

of unshared information.
Several studies show how communication can positively impact accuracy of exper-

tise recognition. For example, Liang, Moreland, and Argote (1995) found teams that
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were trained together and worked together had greater accuracy in determining exper-
tise as communication allowed them to share information about their abilities, skills,

and knowledge. However, other empirical evidence suggests not all communication
may lead to higher accuracy in identifying expertise. Littlepage, Schmidt, Whisler, and

Frost (1995) had 34 teams of university students participate in a noneureka intellective
task. They found that individual perception of others’ expertise is closely related to the
rate of others’ participation in the discussion rather than their actual expertise. They

argued that the teams’ inability to accurately recognize expertise might be the result of
the noneureka nature of the task, task difficulty, and participation patterns. Therefore,

people may use communication to identify expertise but may not be very proficient at
doing so. Further, Austin (2000) found that a high amount of communication is not

inherently related to accurate expertise recognition or team performance. Austin pro-
posed that it is not the interaction patterns themselves that lead to improved accuracy

of expertise recognition but the frequency of specific types of interactions, such as
communication for problem solving with fewer redundant ties.

Clearly, there are inconsistencies in empirical evidence examining the impact of

communication density on expertise recognition. However, it is argued here that the
level of communication density will positively affect accuracy of expertise recogni-

tion such that experts in the network become obvious to others through commu-
nication that leads to increased accuracy of expertise recognition. Thus, given the

need for communication in a network to support and utilize its experts, as well as to
update team members’ directories of others’ knowledge, the following proposition

relating communication density and accuracy of expertise recognition is presented.

P2: Networks with a higher average communication density will have greater accuracy of

expertise recognition over time than networks with a lower average communication density.

Communication density should also affect the distribution of knowledge in a net-

work. Although a team may initially have a relatively uniform distribution of knowl-
edge across all topics, through information allocation, small differences in the amount

of knowledge possessed by each person may be amplified over time, leading to a pro-
gressively differentiated knowledge network (Wegner, 1995). Empirical research by

Moreland (1999) found that communication fosters the development of a differenti-
ated TM system—as networks that communicated during training were able to col-
lectively recall more unique and specific information from the training than networks

whose members were not allowed to communicate. Thus, the following proposition is
proposed relating communication density and knowledge differentiation.

P3: Networks with a higher average communication density will have greater knowledge

differentiation over time than networks with a lower average communication density.

Accuracy of expertise recognition

Given that team members’ knowledge levels can vary and their perceptions of others’

knowledge levels can vary, it becomes evident that members will also vary in the
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extent to which they accurately perceive their teammates’ knowledge levels. Initial
levels of accuracy in expertise recognition will impact the emergent communication

within the network. Littlepage, Robison, and Reddington (1997) found that experi-
ence working with others in a network facilitates recognition of expertise and utili-

zation of expertise. They suggest that working together in the network provides an
opportunity to further develop accurate perceptions of others’ expertise. In other
words, inaccurate initial perceptions may become more accurate through increased

interaction. Likewise, Austin (2000) found that the greater the mean of network
tenure (i.e., the length of network membership), the greater the accuracy of expertise

recognition. Hollingshead (2000) demonstrated the importance of having accurate
perceptions of who knows what by observing people learning new information

on a variety of topics. People focused on their core competencies and left other
areas to be learned by those whom they perceived to be more knowledgeable.

Finally, Lewis (2000) found that familiarity increases the ability of team members
to recognize expertise.

This familiarity and experience identified above is developed, over time, through

communication between the team members. That is, communication serves as
a mediating variable between the initial state of accuracy of expertise recognition

and the final state of accuracy of expertise recognition. Maintaining an accurate
directory of who knows what within a team should facilitate future communicative

interactions. In a functional system, an accurate directory should facilitate commu-
nication; however, it is possible that individuals widely believed to have little knowl-

edge could be marginalized in such a system. Therefore, the next proposition argues
for a positive connection between initial accuracy of expertise recognition and

communication.

P4: Networks with a higher initial level of accuracy of expertise recognition will have a higher

average communication density than networks with a lower initial level of accuracy of

expertise recognition.

Network size

Network size refers to the number of people in the TM system. Most of the early

empirical work on TM systems focused on dyads and found support for the differ-
entiation of knowledge and shared agreement regarding who possesses what knowl-

edge in romantic couples (Hollingshead, 1998a, 1998c; Wegner, Erber, & Raymond,
1991). In addition to dyads, several empirical studies have examined artificial work

teams in laboratories (Liang et al., 1995; Moreland, 1999) and intact work teams
(Palazzolo, 2005). Liang et al. (1995) found that teams of three people who trained

together on a task had more accurate beliefs about the distribution of skills among
team members than those who were trained separately. Moreland (1999) also
showed teams of three people, when training and working together, developed a more

accurate TM system than teams of three who were either trained individually or
trained as teams but then worked with different people. Although these prior studies
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have found strong support for TM theory between two and three people, Palazzolo
argues that larger teams (8–17 members) have difficulty developing their TM systems

and do not structure their communication patterns consistently with TM theory.
A follow-up study by Moreland and Myaskovsky (2000) showed an alternative to

training together: by providing teams with lists of information on who knows what,
the teams performed as well as those who were trained together. Having such an
outside reference may be a means by which larger teams can still develop as TM

systems without the additional costs of training everyone together.
Although the development of TM systems has been examined extensively in

dyads and to some extent in small teams, there remains a need for additional
theoretical and empirical investigation in teams with more than three people, par-

ticularly in regard to the impact of team size on communication, knowledge differ-
entiation, and accuracy of expertise recognition. Moreland (1999) indirectly

addresses the potential impact of team size on accuracy, suggesting people in large
teams are more likely to have trouble identifying who knows what because there are
simply too many directories of others to keep updated. In contrast, Austin (2000)

examined cross-functional networks consisting of between 8 and 11 people in an
organizational setting and found that network density was not related to the ability

to identify expertise. Austin’s results may hold for teams up to 11 people, but it does
not address 15- or 20-person teams.

Further, people who feel more familiar or connected with others in a network
may be more flexible in coordinating their recall strategies (Weldon, Blair, &

Huebsch, 2000). Peterson and Thompson (1997) assert that people who are highly
acquainted should view situations in similar ways as a function of their transitive

memory network. However, larger networks may have greater difficulty in feeling
connected, maintaining team familiarity, and becoming highly acquainted. Thus,
people in large networks may have an opportunity to talk with more people, but few

will actually connect with all their teammates. Based on people’s cognitive limita-
tions and the increased difficulty of becoming familiar and well acquainted with all

members of a larger network, the following proposition relating network size and
communication density is proposed.

P5: Smaller networks will have a higher average communication density than larger

networks.

The five propositions proposed above, and represented schematically in Figure 1,
were derived from the theoretical descriptions of TM systems. We take a systems

perspective and use computational modeling as a tool to address these propositions.
As scholars who advocate a systems perspective have noted, though interpretive

research has great merit, it does not offer the full-range panorama of a well-developed
systems theory. That is, a systems theory that promises to deal with complex struc-

tures, such as nonlinear relationships, should require ‘‘specification of the relation-
ships among the elements and levels,’’ ‘‘take a holistic view,’’ and explain the
emergence of indirect consequences (Poole, 1997, p. 49). The computational model
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implemented here, and described below, incorporates these important aspects of
a systems theory perspective and applies them to TM theory.

Computational models for theory development and specification

In this study, simulations based on a computational model of TM theory help

examine how different initial conditions influence the dynamic development of
the TM system. The goal here is to examine the results obtained by systematically

conducting simulations of a large number of computationally created teams that
vary on three initial conditions and whether or not these systematic differences

support the five propositions. Confirmation will serve to logically validate the de-
duced propositions. Thus, computational models can highlight which aspects of the

theory can benefit from further theoretical development and empirical exploration.
‘‘Creating a formal model forces the researcher to be precise about the relation-

ship among entities, to make implicit assumptions explicit, and to describe in detail

the mechanisms by which entities and relationships change’’ (Carley & Prietula,
1994, p. xiv). For theoretical development, computational modeling forces the

P4 +
P5

 -

P2 +

P3 +

P1 -

Initial
Knowledge

Initial Accuracy
of Expertise
Recognition

Network Size

Ending Accuracy
of Expertise
Recognition

Knowledge
Differentiation

Communication

Development of Transactive Memory System
Initial State of
Networks

Time

Final State of
Networks  

Figure 1 Theoretical model of transactive memory system development with propositions to

be validated.
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explicit or precise identification of theoretical mechanisms where verbal theories lack
such detail (Monge & Contractor, 2003). Specifically, theorists must provide detailed

descriptions of people, tasks, and the interrelations within the network (Carley &
Prietula). Since the creation of a formal model requires precise mathematical defi-

nitions of theoretical mechanisms, multiple interpretations of the verbally described
theoretical statements are possible. Thus, this paper proposes an interpretation of the
theory of TM as a computational model based on a strict interpretation of the

heretofore verbally described theory.
Most theories, including TM, offer a core set of generative mechanisms explain-

ing how people’s attributes (e.g., individual level of knowledge on a particular topic)
and relations with one another (e.g., communication to retrieve information from

others) change over time. Since the generative mechanisms explaining these changes
are typically nonlinear, it is extremely difficult to mentally construe their interde-

pendent implications over time—for a large number of entities or at multiple levels
of analyses (e.g., individuals, teams, organizations). Thus, computational models are
an appropriate technique to specify, with considerable precision, the generative

mechanisms proposed by TM theory.
Blanche, an agent-based computational modeling environment (Hyatt, Contrac-

tor, & Jones, 1997), was used to test these propositions. It was used to specify and
execute the simulations based on a network formulation of the generative mecha-

nisms proposed by TM theory. Other systems dynamics simulation programs such as
Dynamo, STELLA, iThink, Vensim, and Powersim have been used to study the often

nonlinear interrelationships among variables or concepts such as net labor, schedule
pressure, fatigue, and productivity. However, Blanche’s object-oriented (or agent-

based) modeling environment makes it the most appropriate environment to study
TM systems as networks.

Agent-based modeling environments are a more recent entry to the field of

simulation. As Sterman notes, ‘‘In an agent-based model, the individual members
of a population such as firms in an economy or people in a social team are repre-

sented explicitly rather than as a single aggregate entity. Important heterogeneities in
agent attributes and decision rules can then be represented,’’ (2000, p. 896). The

building blocks in these environments are agents, and there has been considerable
recent interest in the development of agent-based computational models and multi-

agent simulation environments (Bond & Gasser, 1988; Drogoul & Ferber, 1994;
Epstein & Axtell, 1996; Gilbert & Troizch, 1999; Langton, Burkhart, Lee, Daniels,
& Lancaster, 1998; Latane, 2000; Page, 1997; Prietula, Carley, & Gasser, 1998). With

respect to this work, agents are used as representations of people on work teams.
In Blanche, each agent has a set of attributes and one or more relations connect-

ing the agents to one another. Further, each agent has associated with it a set of rules
that specify how the value of the attributes and relations can change over time. Core

issues in any network model of agents are (a) the articulation of the attributes in the
network, (b) the relations among the agents, and (c) the coevolution of the attributes

and relations over time based on a set of generative mechanisms or ‘‘rules.’’ These
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core issues are addressed in our proposed TM computational model (the model and
supporting information is available at http://curious.comm.ohio-state.edu/pub/TM/).

A discrete set of generative mechanisms provides flexibility and expressiveness
such that dependencies among agents’ attributes and relations over time are modeled

as a stochastic (i.e., probabilistic) function of values at contemporaneous, prior, or
both points in time. That is, rather than specifying deterministic changes in the
values of agents’ attributes and the values of the relations among agents, they simply

alter the likelihood for that change. For example, one can think of a person’s indi-
vidual knowledge (an attribute), at a point in time, t, as a function of the person’s

knowledge at prior points in time, t 2 1, as well as a function of the person’s com-
munication to allocate and retrieve information (two relations) with other members

in the network contemporaneously at time t. Other people allocating information
to the focal person only alters the likelihood for a change in individual knowledge;

it does not guarantee learning. Under the assumption that attributes and relations
take on real values, Blanche employs nonlinear difference equations as a natural
and efficient computational approach to represent the evolution of a person’s attri-

butes and relations over time.

Computational method

Sample

To logically validate the five propositions examining the mechanisms that may

influence the development of TM systems and the role of communication in TM
systems, artificial networks were created within the Blanche computational modeling

environment. These networks contain a set number of agents or nodes representing
the people on work teams, three attributes for each agent (individual knowledge, new
information, and task assignment), and four relations between the agents (percep-

tion of others’ knowledge, communication to allocate information, communication
to retrieve information, and overall communication). The initial values for one

attribute of the agents and two relations among the agents were systematically
manipulated with high and low values (as described in the research design section

below), allowing for the examination of how networks with different initial condi-
tions develop over time. Since properties of the TM system, such as knowledge

differentiation, are defined as properties of the network, the unit of analysis for this
study is the network of agents, rather than individual agents. The propositions were
tested on a set of 3,200 networks as described under the research design.

Theoretical variables

The process of directory updating is represented by Equation 1 for the self-directory
and Equation 2 for the directory of others (the full equations are available online at

http://curious.comm.ohio-state.edu/pub/TM/). In network terminology, the self-
directory is defined as the attribute KIxi, which indicates i’s level of expertise on

a particular topic, X. Here, X, Y, and Z are used to represent knowledge topics
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important to the team (e.g., marketing, market trends, or thermal dynamics). This
attribute expresses the knowledge level of the agent and can change or be updated

over time.

KIxit 5 function ½KIxiðt21Þ; INFxi; CAIxji� ð1Þ

The self-directory, KIxi, is a function influenced by the agent’s actual knowledge
(KIxi) at the previous point in time, incoming information on topic X to i (INFxi) at
the current point in time, and new information allocated from j to i on topic X

(CAIxji) at the current point in time. The perception of knowledge possessed by
others is defined as the relation KOxij, which indicates i’s perception of j’s level of

expertise on topic X. Likewise, a second relation, KOyij, would indicate i’s perception
of j’s actual level of expertise on topic Y (KIyj).

KOxij 5 function ½KIxi; COMij;+ððCOMikÞðKOxkjÞÞ� ð2Þ

The directory of others’ knowledge, KOxij, is a function of i’s knowledge (KIxi),
communication from i to j (COMij), and the sum of communication to others

weighted by the others’ perceptions of j’s knowledge on topic X (+((COMik)
(KOxkj))). For example, i might upgrade (or downgrade) her perception of j’s

knowledge level in a specific domain after communicating with j. Additionally, i
may revise her perception of j’s expertise in a certain area after communicating with

other agents, k, about j’s expertise.
Communication to allocate information is defined as the relation CAIxij and is

represented by Equation 3.

CAIxij 5 function ½INFxi; KIxi; KOxij� ð3Þ

The relation CAIxij is activated when i gets new information from the environment
on topic X (INFxi), on which i is not an expert (KIxi) and i perceives j to be an expert

on topic X (KOxij).
Communication to retrieve information is defined as the relation CRIxij and is

represented by Equation 4.

CRIxij 5 function ½TASKxi; KIxi; KOxij� ð4Þ

In network parlance, CRIxij indicates i’s communication to retrieve information
about topic X from j. The relation CRIxij is activated when i receives a task requiring

expertise in topic X (TASKxi) on which i is not an expert (KIxi), but perceives j to be
an expert (KOxij).

Communication is defined as the relation COMij and is a collection of all inter-

actions between i and j for information allocation and retrieval on all knowledge
topics. COMij is represented by Equation 5 for the three knowledge areas modeled

here.

COMij 5 function ½CRIxij; CRIyij; CRIzij; CAIxji; CAIyji; CAIzji� ð5Þ
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That is, communication, as a whole, comprises the work-related communicative
exchanges across all the knowledge topics.

Next, the two developmental measures of TM systems are expressed in networks
terms. First, accuracy of expertise recognition (AERx), as shown in Equation 6, is

defined.

AERxij 5 function ½KIxj; KOxij� ð6Þ

Accuracy of expertise recognition is a relation identifying the difference between
what i thinks j knows on topic X (KOxij) and what j actually knows on topic X (KIxj).

The same is computed for topics Y and Z. Further, an overall measure of accuracy
(AER) is calculated as the mean of AERx, AERy, and AERz.

The second developmental measure of TM systems, knowledge differentiation
(KDFR), is represented by Equation 7.

KDFR 5 function ½KIxi; KIyi; KIzi� ð7Þ

Again, KIxi represents agent i’s knowledge on topic X. Likewise, KIyi and KIzi

represent i’s knowledge on topics Y and Z, respectively. Knowledge differentiation

is an attribute that expresses the extent to which i is knowledgeable in one area and
not knowledgeable in others.

Research design

Just as experimental design strategies are used in the study of real teams, an exper-
imental design is required to logically validate the propositions put forth in this study

as well. By manipulating the initial conditions in the computationally created net-
works, the specific impacts of each component can be systematically identified.

As summarized in Figure 1, the five research propositions involve three predictor
variables: (a) level of individual knowledge, (b) accuracy of expertise recognition,
and (c) network size. Each of these three predictor variables was manipulated into

a high and a low condition resulting in a 2 3 2 3 2 complete factorial experimental
design. Table 1 represents the computationally created networks for each of the eight

experimental conditions.
Each condition contained 400 computationally created networks. For example,

Cell 1 in Table 1 indicates that 400 computationally created networks were created
with stochastically generated distributions where (a) the average initial individual

knowledge (KI) among the members was high (on a scale of 0–1, the network mean
was 0.75, with a standard deviation of 0.2), (b) the initial accuracy of expertise
recognition (AER) among the network members was high (on a scale of 0–1, the

network’s mean KI was high and the agents’ mean perception of others’ expertise was
also high with a mean of 0.75 and a standard deviation of 0.2; alternatively, the

network’s mean KI was low with a mean of 0.25 and a standard deviation of 0.2, and
the agents’ KO was also low with a mean of 0.25 and a standard deviation of 0.2), and

(c) the network size was low (the network contained four agents with no variance).
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In contrast, Cell 8 in Table 1 indicates that 400 computationally created networks

were computed where (a) the average KI among the members was low (on a scale of
0–1, the network mean was 0.25, with a standard deviation of 0.2), (b) the initial AER

among the network members was low (on a scale of 0–1, the network’s mean KI was
high with a mean of 0.75 and a standard deviation of 0.2 and the mean KO was low
with a mean of 0.25 and a standard deviation of 0.2; alternatively, the network’s

mean KI was low with a mean of 0.25 and a standard deviation of 0.2, and the mean
KO was high with a mean of 0.75 and a standard deviation of 0.2), and (c) the

network size was high (the network contained 20 agents with no variance). In
creating the 400 networks in each of the eight cells, the constrained normal distri-

bution function in Blanche was used with the specified means and standard devia-
tions listed above to ensure the values of the attributes and relations were confined

within the range of 0–1.

Simulation

After creating networks with different initial conditions, the next step was to simu-
late the development of the TM systems in each of the 3,200 networks. As part of

the simulations, each of the agents in these networks operated according to the rules
specified in the computational model described above. Since these generative

mechanisms were specified as nonlinear difference equations, the three attributes
and four relations had the potential to change at each time step, or iteration.

The simulation was carried out for 99 iterations for each network in each condition.
The 99 iterations used in the simulation were deemed sufficient for the development

of the TM system to ‘‘stabilize.’’ That is, no dramatic changes in the values of the
attributes and relations were discernible after the 75th iteration. For each network,
the values of each agent’s attributes and relations were stored for statistical analysis.

Analysis of computational data

Conducting a statistical analysis on the data generated by the simulations was the
final step in logically validating the theoretically derived propositions. The five

propositions in this study were designed to test the effects of various initial
conditions on the development of the TM system as it is mediated through

Table 1 Experimental Design for Initial State of the Network

Accuracy of Expertise Recognition Starting Knowledge Team Size

4 20

High High 1 5

Low 2 6

Low High 3 7

Low 4 8

Note: The numbers in the cells correspond to the eight conditions in the experimental design.
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communication. The three predictors of communication were initial level of indi-
vidual knowledge (P1), initial accuracy of expertise recognition (P4), and network

size (P5). TM system development is characterized by the ending level of the
network’s accuracy of expertise recognition and knowledge differentiation and

was proposed to be positively influenced by communication (P2 and P3). Although
the networks were assigned to the eight cells (see Table 1) based on high and low
conditions, the actual values of these initial variables were normally distributed

around the specified means and standard deviations. Hence, there was variability
within each of the conditions, although there was considerably greater variability

between the eight conditions.
A path model in Amos 5.0 (Arbuckle, 2003) was used to simultaneously assess

the significance of each of the three explanatory variables on communication and
the influence of communication on the two dependent variables. Significant

regression coefficients for each of the explanatory variables would indicate logical
validation of the corresponding propositions. Further, comparing the standard-
ized coefficients would provide insights into the relative contributions of each of

the variables in explaining the two indexes used to measure the development of
TM systems. In addition to the path analysis, individual regression analyses were

used to test the individual contributions of the explanatory variables on the
dependent variables. Although not reported here, the conclusions from those

results were entirely consistent with the regression results reported here from
the path analysis.

Figure 1 shows the theoretical model used to test the propositions. The fit of
a path model, or structural equation model, is determined by a set of indicators.

First, the x2 statistic is evaluated as a ‘‘badness-of-fit’’ measure. That is, a signifi-
cant x2 value indicates a poor fit between the data and the model and a nonsig-
nificant x2 value would indicate a good fit of the model to the data (Bollen, 1989).

Additional indexes for assessing model fit are the goodness-of-fit index (GFI), the
adjusted goodness-of-fit index (AGFI), and the comparative fit index (CFI) where

values above 0.90 indicate a good fit (Byrne, 2001). Last, the root mean squared
residual (RMSR) is evaluated, and values below 0.05 are indicative of a good

fit (Byrne, 2001).
Figures 2 and 3 plot the changes in individual agents’ knowledge in a network

representing Cells 1 and 8. Figure 2 demonstrates that, over time, there was higher
knowledge differentiation on topic X in the network representing Cell 1, a four-
member network with high mean initial level of knowledge, and high initial accuracy

of expertise recognition. Figure 3 demonstrates that over time, there was lower
knowledge differentiation on topic X in the network representing Cell 8, a 20-mem-

ber network with low mean initial level of individual knowledge, and low initial
accuracy of expertise recognition. Since these are plots derived from single networks

in two cells, they simply serve as a visual example to illustrate the influence of the
explanatory variables on the execution of the computational model. As such, they

should not be used to make generalizations or inferences.

238 Communication Theory 16 (2006) 223–250 ª 2006 International Communication Association

Computational Models of Transactive Memory Systems E. T. Palazzolo et al.



Results

Initial analysis of the theoretical model yielded significant regression coefficients in
the same direction as predicted in each proposition. However, the overall model fit

statistics only indicate a modest fit between the data and the model. The significant
chi-square value, x2(5) = 1052.60, p , .001, indicates a poor fit between the data and
the theoretical model. Similarly, the AGFI value is considerably below the conven-

tional criterion of 0.90 for determining a well fit model (AGFI = 0.621). In contrast,
two additional fit indexes, GFI and CFI, are both above the conventional fit criterion

of 0.90 (0.91 and 0.92, respectively). Further, the RMSR is below the 0.05 conven-
tional criterion (RMSR = 0.004). Each of these three indicators point to a good fit

between the model and the data.
The results for this model are as follows. Proposition 1 argues that there will be

a negative relationship between the team’s starting knowledge level in the amount of
communication between the members throughout their interaction. The regression

coefficient between these two variables supports this proposition (b = 20.55, p ,

.001). The fourth proposition shows greater accuracy leading to more com-
munication (b = 0.05, p , .001), but only to a small extent. The fifth proposition

yielded a negative relationship between the size of the team and the amount of

Figure 2 Evolution of individual level of knowledge in a four-person team where members

have high initial level of knowledge and high initial accuracy of expertise recognition (Cell 1

from Table 1). Each line represents a specific agent’s percentage of knowledge over time.

Note: Knowledge level is represented as the percentage of overall knowledge in one knowledge

area as shown on the vertical axis; time iteration is shown on the horizontal axis.
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communication within the team (b = 20.51, p , .001). Propositions 2 and 3 argue

that more communication interactions would lead to a better developed TM system
as indicated by higher levels of accuracy of expertise recognition and knowledge

differentiation at the end of the simulation. Both propositions are supported by this
analysis (b = 0.28, p , .001; b = 1.15; p , .001, respectively). As the fit indexes only

point to a modest fit between the model and the data, we explored alternative
structural models as described in the next section.

Modified model

Given the less than adequate fit of the theoretical model, we pursue to improve the
model based on the standard practice of referring to the modification indexes and
only adding or removing a connection between variables when theoretically defen-

sible. Toward that end, no connections were removed and three new connections
were added: from starting knowledge level to ending accuracy level, from starting

accuracy level to ending differentiation level, and from team size to ending differ-
entiation level. The modified model is shown in Figure 4.

This modified model provides a much better overall fit to the data as evi-
denced by the nonsignificant chi-square, x2(2) = 1.98, p . .05, the small RMSR

Figure 3 Evolution of individual level of knowledge in a 20-person team, where members

have low initial level of knowledge and low initial accuracy of expertise recognition (Cell 16

from Table 1). Each line represents a specific agent’s percentage of knowledge over time.

Note: Knowledge level is represented as the percentage of overall knowledge in one knowledge

area as shown on the vertical axis; time iteration is shown on the horizontal axis.
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value (RMSR = 0.000), and fit indexes above 0.90 (AGFI = 0.998, GFI = 1.00,

CFI = 1.00). Although the magnitudes of the regression coefficients are different
than in the theoretical model, they are all significant in the same direction as
initially proposed. Thus, this model bolsters support for the five proposed rela-

tionships and provides some insight into three relationships to consider when
evaluating the evolution of TM systems. The model results and fit indexes for

both the theoretical and the modified models are shown in Table 2 and Table 3,
respectively.

From the modified model, we see in addition to the theoretically stated relation-
ships that there is a positive relationship between the level of knowledge that the

teams start with and their ending accuracy of expertise recognition (b = 0.86, p ,

.001). Conversely, both the starting accuracy of expertise recognition and team size
are negatively related to the extent to which the team differentiates its knowledge

levels (b = 20.21, p , .001; b = 20.17, p , .001). That is, teams that start off
accurate are less likely to end up differentiated. Similarly, larger teams are less likely

to differentiate than smaller teams.
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Figure 4 Modified model of transactive memory system development with standardized

coefficients.
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Discussion

This section discusses the effects of three distinct initial conditions on team mem-

bers’ ability to accurately perceive others’ expertise and the team’s ability to differ-
entiate its knowledge system. Additionally, the mediating role of communication on

TM development is discussed. The data generated by the computational model
represent the multiple components of a TM system and show how such systems
developed over time. These data support the proposed propositions and indicate

three additional relationships between initial and developed systems. The findings of
this study clearly show the impact of changes in initial conditions on TM system

development and, therefore, highlight the importance of focusing on team compo-
sition when creating work teams. Further, this study highlights some of the benefits

of computational modeling to advance verbally described theories using computa-
tional modeling to logically validate derived propositions from TM theory.

As a cautionary note, communication in this study was limited to information
allocation and information retrieval—the two communication processes of TM

theory. Further, the team context studied is information-based teams and not all
work teams. Therefore, the claims and suggestions made below must be under-
stood in this context. The relationship between each initial condition and the two

Table 2 Standardized Regression Coefficients of the Theoretical Model and Modified Model

Proposition Theoretical Model Modified Model

b Significance b Significance

1 Initial level of knowledge 20.55 *** 20.65 ***

2 Communication on accuracy

of expertise recognition

0.28 *** 1.14 ***

3 Communication on knowledge

differentiation

1.15 *** 0.97 ***

4 Initial accuracy of expertise

recognition

0.05 *** 0.13 ***

5 Size of the network 20.51 *** 20.40 ***

*** p , .001.

Table 3 Model Fit Statistics for the Theoretical Model and Modified Model

Model Chi-Square df p GFI AGFI CFI RMSR

Theoretical 1052.60 5 *** 0.910 0.621 0.922 0.004

Modified 1.98 2 .372 1.000 0.998 1.000 0.000

GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index; CFI = comparative fit

index; RMSR = root mean squared residual.

*** p , .001.
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developmental measures is discussed next. We conclude with the discussion of the
role of communication in TM theory.

Starting knowledge level

As predicted, team members’ starting knowledge level was shown to be negatively
related to the team’s average communication. Following the path, initial knowledge
level is negatively related to ending accuracy level and negatively related to the ending

knowledge differentiation level. That is, teams starting with low knowledge levels
(e.g., novices working together) are more likely to communicate, which results in

a more differentiated and more accurate knowledge structure as the team develops
over time. Conversely, teams with high initial knowledge levels (e.g., expert teams for

problem solving) are less likely to communicate with each other for task-related
issues. Although this finding is consistent with TM theory, reduced need to com-

municate is clearly shown to reduce the actual communication. Less communication
may prove to be harmful to teams in the long run. Here, we see it reduces
their differentiation and accuracy and, therefore, hinders the development of the

TM system.

Starting accuracy level

A starting level for accuracy of expertise recognition was predicted and shown to be

positively associated with the communication level. The initial accuracy of expertise
recognition proved to be the weakest predictor (b = 0.13) of communication. This

finding is not surprising in that people tend to have perceptions of what they think
others know, but they do not always have evidence of their accuracy. Therefore,

although it would be ideal to have a stronger relationship here, such a connection
may not be realistic for actual teams. In short, people act on their perceptions rather
than the accuracy of those perceptions.

Team size

In this study, the teams were designed with 4 and 20 members. Although such
a design does not provide much variance in team size, it does provide for the

comparison between small and large teams. As evidenced in the results, size matters
for TM systems. The change in team size from 4 to 20 members was shown to have an

indirect effect on the systems development with respect to its accuracy in perceiving
others’ expertise as well as direct and indirect effects on differentiating its knowledge
stores. Consistent with the anecdotal evidence most of us have, size is negatively

related to the average amount of communication; in turn, the size of the team is
negatively related to the ending level for accuracy of expertise recognition and

negatively related to the ending level for knowledge differentiation. This finding goes
against the claims of early theorists that TM theory would be directly transfer-

able from the lab to the organizational setting (Hollingshead, 1998a, 1998b, 2000;
Moreland, 1999; Wegner, 1987). However, this is not to say that TM theory should

be discarded for organizational teams but that the theory may need to include
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other variables and better specify its boundary conditions, especially with respect to
team size.

Again, the findings indicate a direct negative relationship with communication
and a direct negative relationship with knowledge differentiation. It is worthwhile to

note that there is a lot of variability between 4 and 20 members, and many func-
tioning work teams show that team size varies considerably. That said, the relation-
ship between size and these other variables may not be linear. In other words, four

members may not be optimal team size for TM systems. Future research must
explore a wide range of team sizes to identify the inflection point marking a decrease

in communication, in knowledge differentiation, or both (i.e., there may be a positive
relationship between size and communication up to a specific enrollment number).

Further, the ideal team size may be a function of the number of knowledge areas
needed by the team or the degree of complexity in the team’s tasks. Likewise, future

research needs to explore the relationship between size and number of knowledge
areas as well as the relationship between signs and task complexity.

Communication

This research demonstrates the importance of communication for TM theory. As

shown in these results, communication plays a clear role in the development of TM
systems. Each of the initial conditions tested had a significant effect on communi-

cation, and communication significantly impacted the two developmental measures
of TM systems. The strongest influence on communication is the initial knowledge

level of the team members. As predicted, lower knowledge levels lead to higher
communication levels, suggesting that team members will communicate with many

people when they lack the requisite knowledge to perform their work. These higher
communication levels aided team members in developing accurate directories of
expertise recognition as well as differentiating their knowledge stores. That is, com-

munication facilitates the development of the TM system. Thus, this work under-
scores the need to understand the role of communication for knowledge

management. The rich history of communication theories can inform the important
intersection between the knowledge that individuals, teams, and organizations pos-

sess and their ability to share it with each other—internally for product development
and creativity or externally for profit.

The proposed model stated an indirect relationship, through communication,
between accuracy of expertise recognition and knowledge differentiation with
a positive net effect. However, beyond the proposed relationships, a direct rela-

tionship between these two variables was found to be negative. This finding
suggests a potential paradox of TM systems worthy of further exploration.

Namely, accuracy of expertise recognition and knowledge differentiation are
the two indicators of a well-developed TM system and should be positively

related. Independent of the time points observed, accurate directories should
facilitate differentiated knowledge structures. We see the positive relationship

that exists in a mediated path through communication, thus highlighting the
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importance of communication for TM development, but the negative direct
relationship hints at a problem that could emerge in an unguided system where

members are not actively working toward developing their TM system. Therefore,
this direct relationship, the indirect relationship, and the interaction between the

two need to be studied further.
As stated earlier, communication was limited in this model to task-related com-

munication for information allocation and retrieval only. This constraint was

imposed to most accurately model TM systems based on the generative mechanisms
as described in the literature. Namely, people on TM systems are motivated to talk

with one another when they need to transfer information. Future research in this
area should expand this operationalization to include other dimensions of commu-

nication. Communication also serves an enabling and constraining role for team
discussions (Poole, Seibold, & McPhee, 1996) in that it enables the sharing of infor-

mation between members, but it also constrains their creativity by limiting the team
members whom they can interact with, and moreover, in the context of TM theory,
they are constrained to task-specific interactions. Additionally, other roles of com-

munication in organizations include, but are not limited to, power and control,
training, politics, and integration and assimilation.

Although this work does not point to a preferred communication density level
for the TM system, it does show a strong positive relationship linking communica-

tion density with a well-developed TM system. Of course, it would be dangerous
to conclude that, without exception, more overall communication in a team is good.

As with many things in life, more communication can be helpful only up to a cer-
tain point. Identifying that specific point (or, more likely, range) is a topic for

future research.
Last, TM systems, although important for coordinating and completing work-

loads, do not exist in isolation. That is, TM systems are often embedded within larger

systems (e.g., organizational and societal) and the larger systems influence the TM
systems. Therefore, the role of communication in TM systems goes beyond the

communication density of the specific team and, therefore, needs to be incorporated
into future research.

Future research directions

Expand concept of communication

In this research, the focus of communication on task-based exchanges points to the

need for TM theory to include communication beyond task-based communication
within the organization. An expanded view of communication should allow for

directory updating outside of task-centric work. That is, the function of ‘‘water
cooler’’ communication may still have its place in TM system development even

though it is not directly task focused. Thus, future research on evaluating the devel-
opment of an organization’s TM system needs to account for other contributing

factors besides work-related events to communication between team members.
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For example, homophily, or similarity between people (McPherson & Smith-Lovin,
1987), and physical proximity (Conrath, 1973; Zahn, 1991) have been shown to

promote communicative interactions.

Additional knowledge areas

This research was based on three knowledge areas, which is overly simplistic for any
team. However, it does provide a good starting point for research in this area. Future

research should include many more knowledge domains. Variations in the number
of domains would be a good condition for future experimental research. In partic-
ular, future studies should explore situations where there are fewer knowledge topics

than people (as is the case in this study), a one-to-one correspondence between the
number of knowledge areas and the number of people, and more knowledge areas

than there are people. Such a manipulation would show how teams balance various
cognitive demands and the extent of redundancy.

Experimental and field research

Following the results of this model, teams starting with a small number of

nonexperts who accurately perceive what others know have the best chances of
emerging into well-developed TM systems. However, these results are modeled

results and must be empirically validated. Additionally, the model implemented
here was not designed to represent all types of work teams, but to represent work

teams with an emphasis on knowledge management. Although the computational
model appears to adequately represent the core mechanisms of TM theory,

longitudinal research will allow for more detailed validation of the fit between
the theory, the model, and the actual teams. That is not to say there is little value
in modeling research, quite the contrary. The approach described in this study

offers researchers the opportunity for a more precise exploration of the dynamics
that emerge from the nonlinear mechanisms implied in the verbal descriptions

of theories. As such, the approach proposed here extends recent interest in exploring
more principled methods to use computational modeling as a tool for theory con-

struction. However, data from experimental as well as intact teams are essential for
model validation and prior to making recommendations to practitioners.
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